SHEET INDEX

- TI.O COVER
- TI.I PROJECT NOTES
- AI.O SITE PLAN
- A2.0 ADA LAYOUT
- EI.O ELECTRICAL LAYOUT
- EI.I STRINGING LAYOUT
- E1.2 ELECTRICAL ELEVATIONS
- EI.3 CONSTRUCTION DETAILS
- E2.0 ELECTRICAL DIAGRAM
- E2.1 SAFETY PLACARDS & ELECTRICAL CALCS
- DI.O EQUIPMENT DATA SHEETS

Know what's **below. Call** before you dig.

PROJECT DESCRIPTION

THIS STRUCTURE MOUNTED PHOTOVOLTAIC (PV) SYSTEM IS TO BE INSTALLED AT THE OFFICE BUILDING IN MORENO VALLEY, CALIFORNIA. THE ENERGY PRODUCED BY THE PV SYSTEM SHALL BE INTERCONNECTED WITH THE UTILITY GRID THROUGH THE EXISTING ON-SITE ELECTRICAL EQUIPMENT VIA A SUPPLY SIDE CONNECTION IN THE MAIN SERVICE PANEL. THIS PROJECT INCLUDES A 87 KW, 193.5 KWH BANK OF STORAGE BATTERIES.

> SCOPE OF WORK (2044) PV MODULES (TOTAL: 43,869 SQ. FT.) (11) 40.0 kW INVERTERS (6) 33.0 kW INVERTERS (3) 29 kW, 64.5 kWh AC BATTERY UNITS (1) BATTERY ENCLOSURE (I) SWITCHGEAR, 480 VAC, NEMA 3R (1) AC COMBINER PANEL, 480 VAC, NEMA 3R (I) AC DISCONNECT, 480 VAC, NEMA I (I) BESS METER, 480 VAC, NEMA 3R (1) PV/BESS METER, 480 VAC, NEMA 3R

SITE SPECIFICATIONS

OCCUPANCY CATEGORY: II DESIGN WIND SPEED: I I O MPH EXPOSURE CATEGORY: C GROUND SNOW LOAD: O PSF

GOVERNING CODES

2016 CA ELECTRICAL CODE: § 110, 240, 250, 690, 705 2016 CA BUILDING CODE: § 1507.17, 1510.7, 3111 2016 CA FIRE CODE: § 605.11 UNDERWRITERS LABORATORIES (UL) STANDARDS OSHA 29 CFR 1910.269

CONSTRUCTION NOTES

I.) CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS PRIOR TO INITIATING CONSTRUCTION

2.) CONTRACTOR SHALL REVIEW ALL MANUFACTURER INSTALLATION DOCUMENTS PRIOR TO INITIATING CONSTRUCTION 3.) ALL EQUIPMENT SHALL BE LISTED BY U.L. (OR EQUAL) AND LISTED FOR ITS SPECIFIC APPLICATION

4.) ALL EQUIPMENT SHALL BE RATED FOR THE ENVIRONMENT IN WHICH IT IS INSTALLED

5.) ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S INSTALLATION INSTRUCTIONS

6.) ACCESS TO ELECTRICAL COMPONENTS OVER 150 VOLTS TO GROUND SHALL BE RESTRICTED TO QUALIFIED PERSONNEL 7.) ALL CONDUCTORS SHALL BE COPPER, RATED FOR 1000 VOLTS AND 90°C WET ENVIRONMENT, UNLESS OTHERWISE NOTED

8.) WHERE SIZES OF JUNCTION BOXES, RACEWAYS, AND CONDUITS ARE NOT SPECIFIED, CONTRACTOR SHALL SIZE THEM ACCORDING TO APPLICABLE CODES

9.) PV MODULE FRAMES SHALL BE BONDED TO RACKING RAIL OR BARE COPPER G.E.C. PER THE MODULE MANUFACTURER'S LISTED INSTRUCTION SHEET

IO.) PV MODULE RACKING RAIL SHALL BE BONDED TO BARE COPPER G.E.C. VIA WEEB LUG, ILSCO GBL-4DBT LAY-IN LUG, OR EQUIVLENT LISTED LUG.

> I I .) GROUNDING ELECTRODE CONDUCTOR (G.E.C.) SHALL BE CONTINUOUS AND/OR IRREVERSIBLY SPLICED/WELDED

I 2.) ALL JUNCTION BOXES, COMBINER BOXES, AND DISCONNECTS SHALL BE INSTALLED IN AN ACCESSIBLE LOCATION

13.) ROOF ACCESS POINTS SHALL BE AT A STRONG POINT ON THE BUILDING AND NOT REQUIRE THE PLACEMENT OF LADDERS OVER EXTERIOR WALL OPENINGS

14.) WORKING SPACE AROUND ELECTRICAL EQUIPMENT SHALL COMPLY WITH NEC 110.26

Project:		
MORENO VALLI	EY, CA 9255	53
Project Details: 694.96 kWstc, AHJ: MORENO V	639.8 kW A ALLEY, CITY	4C 0
Engineering Approv	al:	
1		
REVIS	IONS DATE	R
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL	IONS DATE 4/9/2018 4/23/2018 4/27/2018	
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018	R
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018	R
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018	R
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD # PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	R
REVIS DESCRIPTION SCE SLD SCE SLD PLOT PLAN ORIGINAL CONDUIT, SPECS Sheet Title: CON	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD # PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 5/1/2018	
REVIS DESCRIPTION SCE SLD SCE SLD # PLOT PLAN ORIGINAL CONDUIT, SPECS	IONS DATE 4/9/2018 4/23/2018 4/27/2018 5/1/2018 /ER	
REVIS DESCRIPTION SCE SLD SCE SLD PLOT PLAN ORIGINAL CONDUIT, SPECS Sheet Title: CON Sheet Title: CON Sheet Size: ARCH D - DESIGN PV-102216-0112	IONS DATE 4/9/2018 4/23/2018 5/1/2018 5/1/2018 /ER	
REVIS DESCRIPTION SCE SLD SCE SLD # PLOT PLAN ORIGINAL CONDUIT, SPECS Sheet Title: CON Sheet Title: CON Sheet Size: ARCH D - DESIGN # DRAFTING PV-102216-0112	IONS DATE 4/9/2018 4/23/2018 5/1/2018 5/1/2018 /ER /ER .0 36" x 2 BY: DOMED BY COM	

AD

CONTRACTOR NOTES

- I.) THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND NOTIFY THE SYSTEM DESIGN ENGINEER OF ANY DISCREPANCIES BETWEEN EXISTING CONDITIONS AND DRAWINGS.
- 2.) THE CONTRACTOR SHALL SUPPLY AND INSTALL ALL WORK AS SHOWN IN THE CONSTRUCTION DOCUMENTS UNLESS OTHERWISE NOTED. ALL WORK SHALL BE PERFORMED IN AN ORDERLY. WORKMAN-LIKE AND SAFE MANNER BY WORKERS SKILLED AND EXPERIENCED IN THEIR TRADES.
- 3.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL INSPECTIONS TO BE WITNESSED BY THE AHJ AND/OR THE OWNER. THE CONTRACTOR SHALL WORK WITH THE OWNER'S INSPECTION AGENCY TO PLAN THE INSPECTIONS, AND NOTIFY ALL PARTIES INVOLVED SUFFICIENTLY IN ADVANCE TO ALLOW THE INSPECTIONS TO TAKE PLACE IN A TIMELY MANNER AND NOT DELAY THE PROGRESS OF THE WORK. THE OWNER AND SYSTEM DESIGN ENGINEER WILL NOT BE RESPONSIBLE FOR SCHEDULING, ARRANGING OR COORDINATING THE INSPECTIONS.
- 4.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING THE AREAS WHERE WORK IS TAKING PLACE, AS WELL AS ANY ADJOINING AREAS WHICH MAY BE AFFECTED BY THE WORK, TO PREVENT SUBJECTING THE OCCUPANTS, STRUCTURES, VEHICLES, EQUIPMENT, OR ANY OTHER PARTS OR CONTENTS OF THE SITE TO HAZARD OR DAMAGE.
- 5.) CONTRACTOR SHALL FURNISH ALL NECESSARY BOXES, OUTLETS, SUPPORTS, CONDUITS, FITTINGS, AND ACCESSORIES TO FULFILL APPLICABLE CODES, REGULATIONS, BUILDING STANDARDS, AND THE BEST PRACTICE OF THE TRADE FOR THE INSTALLATION OF ELECTRICAL WORK.
- 6.) THE CONTRACTOR SHALL, AT ALL TIMES DURING THE WORK, MAINTAIN ACCESSIBILITY FROM THE STREET TO ALL FIRE HYDRANTS, POWER OR LIGHT POLES, AND SIMILAR UTILITY AND PUBLIC SERVICE ITEMS WITHIN OR ADJACENT TO THE CONSTRUCTION SITE.
- 7.) WORK SHALL NOT RESTRICT CLEAR AND UNOBSTRUCTED ACCESS TO ANY WATER OR POWER DISTRIBUITION FACILITIES (POWER POLES, PULLBOXES, TRANSFORMERS, VAULTS, PUMPS, VALVES, METERS, APPURTENANCES, ETC.) OR TO THE LOCATION OF THE HOOKUP.
- 8.) THE OWNERS AND THE AHJ SHALL BE NOTIFIED IN WRITING IN ADVANCE OF ANY REQUIRED CONSTRUCTION OPERATION THAT WILL INVOLVE INTERRUPTION OF THE HEATING, WATER, FIRE PROTECTION SYSTEMS, TELEPHONE, GAS OR ELECTRICAL SERVICES TO THE OTHER BUILDINGS AND AREAS OF THE SITE. THE CONTRACTOR SHALL COORDINATE ANY REQUIRED SHUTDOWN OF THE UTILITIES WITH THE OWNERS, THE AHJ, AND THE UTILITY COMPANY.
- 9.) UPON REVIEW OF ELECTRICAL DRAWINGS, THE ELECTRICAL CONTRACTOR SHALL INFORM THE SYSTEM DESIGN ENGINEER OF ANY DISCREPANCIES OR REQUEST CLARIFICATION, IF NECESSARY, CONCERNING THE INTENT OF THE PLANS AND SPECIFICATIONS TO PROVIDE A COMPLETE ELECTRICAL INSTALLATION.
- IO.) THE CONTRACTOR SHALL COORDINATE HIS WORK WITH OTHER CONTRACTORS WHOSE WORK MIGHT AFFECT THIS INSTALLATION. CONTRACTORS SHALL ARRANGE ALL PARTS OF THIS WORK AND EQUIPMENT IN PROPER RELATION TO THE WORK AND EQUIPMENT OF OTHERS AND WITH BUILDING CONSTRUCTION AND ARCHITECTURAL FINISH SO THAT IT WILL HARMONIZE IN SERVICE AND APPEARANCE.
- II.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING WITH THE OWNER'S INSPECTION AGENCY TO ARRANGE FOR INSPECTIONS RELATED TO ALL SPECIAL INSPECTIONS IN A TIMELY MANNER, AND SHALL BE PRESENT AS REQUIRED AT THE INSPECTIONS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSURING THAT THE APPROPRIATE SUBCONTRACTORS ARE PRESENT DURING TESTS AND INSPECTIONS OF THE SYSTEMS FOR WHICH THE SUBCONTRACTORS ARE RESPONSIBLE.

PHOTOVOLTAIC NOTES:

- I.) ALL ASPECTS OF WORK RELATED TO THE SOLAR PHOTOVOLTAIC (PV) SYSTEM SHALL BE IN ACCORDANCE WITH ALL STATE AND LOCAL CODES, UTILITY REQUIREMENTS, AND THE NEC, ESPECIALLY ARTICLE 690.
- 2.) SOLAR PV MODULE FRAMES SHALL BE BONDED TO RACKING RAIL OR BARE COPPER E.G.C. PER THE MODULE MANUFACTURER'S LISTED INSTRUCTION SHEET.
- 3.) SOLAR PV SYSTEMS SHALL BE GROUNDED IN ACCORDANCE WITH NEC 690 PART V: GROUNDING.
- 4.) COMBINER BOXES, FUSING, WIRE SIZES, QUANTITIES AND CONDUIT SIZES BETWEEN SOLAR ARRAYS AND INVERTERS TO BE VERIFIED BY CONTRACTOR WITH SOLAR MODULE AND INVERTER MANUFACTURERS BEFORE INSTALLATION.
- 5.) ALL PV SOURCE CIRCUIT CONDUCTORS AND CONNECTORS SHALL BE SUPPORTED AND SECURED WITHOUT EXCESSIVE STRESS. NO WIRING SHALL BE PERMITTED TO TOUCH THE ROOF SURFACE.
- 6.) PV SOURCE CIRCUIT CONDUCTORS EXPOSED BETWEEN ARRAYS SHALL BE SECURED ON BOTH SIDES. AND BE PROTECTED FROM PHYSICAL DAMAGE AND ABRASION, INCLUDING FROM EDGES OF RACKING, CHANNEL EDGES, WIRE TRAYS, ETC.
- 7.) ANY CABLE TIES USED SHALL BE HEAT STABILIZED (-40C TO 105C), UV STABILIZED AND OUTDOOR RATED. SUITABLE AND DURABLE FOR THE ENVIRONMENT AND LIFE OF THE PV SYSTEM.
- 8.) WHERE EXPOSED TO SUNLIGHT, CONDUCTORS SHALL BE LISTED AND MARKED AS SUNLIGHT RESISTANT. 9.) ALL EQUIPMENT GROUND CONDUCTORS SMALLER THAN AWG #6 SHALL BE PROTECTED FROM PHYSICAL
- DAMAGE BY AN IDENTIFIED RACEWAY OR CABLE ARMOR UNLESS INSTALLED WITHIN THE HOLLOW SPACES OF THE FRAMING MEMBERS OF BUILDINGS OR STRUCTURES AND WHERE NOT SUBJECT TO PHYSICAL DAMAGE.

EQUIPMENT NOTES

- LOCATION.

- CONTRACTOR, IF NECESSARY.

ELECTRICAL NOTES:

- BE PADLOCKED.

- SPLICED/WELDED.
- THEY WILL BE READILY VISIBLE.

I.) ALL MATERIALS, SUPPLIES, AND EQUIPMENT SHALL BE LISTED, USED, AND INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INSTRUCTIONS, AND APPLICABLE NATIONALLY RECOGNIZED TESTING LABORATORY (NRTL) REQUIREMENTS.

2.) ALL EQUIPMENT SHALL BE RATED FOR THE ENVIRONMENT IN WHICH IT IS INSTALLED. 3.) WORKING SPACE AROUND ELECTRIAL EQUPMENT SHALL COMPLY WITH NEC 110.26. 4.) THE APPROXIMATE LOCATIONS OF ALL JUNCTION BOXES, COMBINER BOXES, CONDUITS, ETC. SHALL BE DETERMINED FROM THE DRAWINGS. AND VERIFIED BY THE CONTRACTOR FOR INSTALLATION. 5.) ALL JUNCTION BOXES, COMBINER BOXES, AND DISCONNECTS SHALL BE INSTALLED IN AN ACCESSIBLE

G.) PROVIDE NEMA 3R RATED EQUIPMENT OR BETTER WHERE EXPOSED TO OUTDOORS. 7.) WHERE SIZES OF RACEWAYS OR BOXES ARE NOT INDICATED ON THE DRAWINGS, THE CONTRACTOR SHALL SIZE THESE ITEMS AS REQUIRED FOR THE INSTALLATION.

8.) ALL VERTICAL RUNS OF CONDUIT OR TUBING TERMINATING IN THE BOTTOM OF WALL BOXES OR CABINETS OR SIMILAR LOCATIONS, SHALL BE PROTECTED FROM THE ENTRANCE OF FOREIGN MATERIAL PRIOR TO THE INSTALLATION OF CONDUCTORS.

9.) METAL RACEWAYS, METAL ENCLOSURES OF ELECTRICAL DEVICES AND EQUIPMENT, MODULE FRAMES, AND OTHER EQUIPMENT SHALL BE COMPLETELY GROUNDED IN ACCORDANCE WITH THE NEC. IO.) PROPER HARDWARE FOR A COMPLETE GROUNDING AND BONDING SYSTEM SHALL BE INSTALLED BY THE

II.) GROUNDING RODS SHALL HAVE A RESISTANCE TO GROUND OF 25 OHMS OR LESS AND SHALL BE 5/8" x 8' MIN, COPPER-BONDED STEEL. ALL GROUND CLAMPS USED SHALL BE UL 467 LISTED.

12.) ALL PVC CONDUIT EXPOSED TO SUNLIGHT SHALL BE SCHEDULE 80 AND MARKED AS SUNLIGHT RESISTANT. ALL UNDERGROUND PVC CONDUIT SHALL BE SCHEDULE 40 OR 80.

I.) ELECTRICAL POWER MUST BE SHUT OFF PRIOR TO THE CONTRACTOR PERFORMING ANY WORK IN RACEWAYS WITH LIVE ELECTRICAL CIRCUITS OR ANY OTHER EQUIPMENT. WHEN SWITCHES OR CIRCUIT BREAKERS ARE OPENED FOR WORK ON ELECTRICAL EQUIPMENT OR WIRING, SIGNS OR TAGS SHOULD BE INSTALLED AT THE SWITCH OR BREAKER STATING THAT WORK IS BEING PERFORMED ON THEM. INCLUDE THE TIME, DATE, AND CONTRACTOR'S NAME ON THE SIGN OR TAG. IF DEVICE IS LOCKABLE, IT SHOULD

2.) THE ELECTRICAL WORK SHALL COMPLY WITH THE REQUIREMENTS OF THE AHJ, NATIONAL FIRE PROTECTION AGENCY (NFPA), NATIONAL ELECTRICAL CODE (NEC), AND OSHA.

3.) PHASING OF NEW CONDUCTORS TO MATCH EXISTING CONDUCTORS. IF INSTALLATING A NEW CIRCUIT, THEN CONTRACTOR SHALL FOLLOW THE PHASING SCHEMES PROVIDED IN THE ELECTRICAL DIAGRAM. 4.) ALL CONDUCTORS SHALL BE COPPER, RATED FOR 90°C WET ENVIRONMENT, AND 1000 VOLTS DC OR 600 VOLTS AC, UNLESS OTHERWISE NOTED.

5.) GROUNDING ELECTRODE CONDUCTOR (G.E.C.) SHALL BE CONTINUOUS AND/OR IRREVERSIBLY

6.) FLEXIBLE, FINE-STRANDED CABLES SHALL BE TERMINATED ONLY WITH TERMINALS, LUGS, DEVICES, OR CONNECTORS THAT ARE IDENTIFIED AND LISTED FOR SUCH USE PER NEC 690.3 I (F).

7.) ALL WIRES SHALL BE IDENTIFIED BY CIRCUITS IN ALL CABINETS, BOXES, WIRING TROUGHS, AND OTHER ENCLOSURES, AND AT ALL TERMINAL POINTS, I.E., RECEPTACLES, MECHANICAL LUGS, COMPRESSION FITTINGS. THE CIRCUIT DESIGNATIONS SHALL BE AS SHOWN ON THE CONTRACT DRAWINGS OR AS DIRECTED BY THE SYSTEM DESIGN ENGINEER. LABELS OR TAGS SHALL BE APPLIED TO WIRES SO THAT

8.) FUSES FOR SWITCHES SHALL BE CURRENT-LIMITING TYPE WITH A MINIMUM INTERRUPTING CAPACITY OF 200,000 AMPERES RMS (UNLESS OTHERWISE NOTED) AND OF THE CONTINUOUS CURRENT RATINGS AS INDICATED ON THE DRAWINGS OR AS RECOMMENDED BY THE MANUFACTURER.

EL	EC	CTRICAL LEGEND
	=	CIRCUIT CONDUCTORS
	=	EQUIPMENT GROUNDING CONDUCTORS
	=	TERMINAL BLOCK
-^	=	FUSE
50	=	CIRCUIT BREAKER
<u> </u>	=	THROW SWITCH (KNIFE-BLADE)
5	=	RECLOSING CIRCUIT BREAKER
	=	RECLOSING DISCONNECT/RELAY
 	=	GROUNDING ELECTRODE SYSTEM
	=	PV MODULE
	=	INVERTER
	=	MICROINVERTER
	=	POWER OPTIMIZER
	=	METER/MONITORING DEVICE
3	=	TRANSFORMER
G	=	GENERATOR
	=	TRANSFER SWITCH
I	=	BATTERY
•)	=	CURRENT TRANSFORMER (CT)

SITE/		RAY PLAN LEGEND
	=	CONDUIT ROUTES
	=	CONDUIT ROUTES (UGND OR INDOORS)
	=	PV MODULE
	=	PV EQUIPMENT
	=	RAFTER/TRUSS
	=	STANDING SEAM
0	=	VENT
	=	CHIMNEY
	=	SKYLIGHT
0	=	HVAC UNIT
	=	ROOF HATCH
	=	PV ATTACHMENT FLASHING
	=	RACKING RAIL
	=	SETBACKS/PATHWAYS
	=	SWINGING DOOR
\bigcirc	=	TREE/BUSH

ELECTRICAL LEGEND - DC

_	=	POSITIVE TERMINAL (PHASED RED)
_	=	NEGATIVE TERMINAL (PHASED BLACK)
'	=	GROUND TERMINAL (PHASED GREEN)

ELEC	<u>C. L</u>	<u>EGEND - 480 VAC</u>
LI	=	LINE I TERMINAL (PHASED BROWN)
L2	=	LINE 2 TERMINAL (PHASED ORANGE)
L3	=	LINE 3 TERMINAL (PHASED YELLOW)
Ν	=	NEUTRAL TERMINAL (PHASED WHITE)
G	=	GROUND TERMINAL (PHASED GREEN)

Project:		
MORENO VALLE	EY, CA 9255	53
Project Details: 694.96 kWstc, AHJ: MORENO V	639.8 kW A ALLEY, CITY	∖C OF
Engineering Approv	al:	
REVIS	IONS	
DESCRIPTION SCE SLD	DATE 4/9/2018	REV I
SCE SLD & PLOT PLAN ORIGINAL	4/23/2018 4/27/2018	2 A B
	5/1/2010	

ORIGINAL	4/2//2018	A
CONDUIT, SPECS	5/1/2018	В
Sheet Title:		
PROJECT	r notes	5
Sheet Number:		
	.	
Shoot Size		
ARCH D -	36" x 2	4"
	RV.	
CERTIFIED PV Installation Professional # PV-102216-011	268	
\sim		
Sep	ISO 2 POWER BY DE	ar, sign
Reviewed & Approv	red by:	DCED
Al		STIFIED
	Pro	Contral

		- INVERTERS #2 \$ #	3
	STR 2.B. I (18)	STR 2.A.1 (18)	STR 3.A. I (18)
	STR 2.B.2 (18)	STR 2.A.2 (18)	STR 3.A.2 (18)
STR 2.C.2 (16)	STR 3.C.1 (19)	STR 3.B.1 (18)	STR 3.B.2 (18)

		- INVERTERS #4 \$ #5	- INVERTERS	5 #6 ¢ #7
STR 4 A I (18)	STR 5 B L (18)	STR 6 A L (18)		STR 6 B L (17)
STR 4.A.2 (18)	STR 5.B.2 (18)	STR 6.A.2 (18)	STR 7.A.2 (18)	STR 6.B.2 (17)
STR 4.B.I (18)	STR 4.C.1 (16)	STR 5.C. I (IG)	STR G.C. I (16)	STR 7.C.I (IG) STR 7.B.I (I7)
STR 4.B.2 (18)	STR 4.C.2 (16)	STR 5.C.2 (16)	STR 6.C.2 (16)	STR 7.C.2 (16)
STR 5.A. I (18)	STR 4.D.1 (16)	STR 5.D. I (IG)	STR 6.D.1 (16)	STR 7.D.1 (16) STR 7.B.2 (17)
STR 5.A.2 (18)		STR 5.D.2 (16)	STR 6.D.2 (16)	STR 7.D.2 (16)

STR 8.A.1 (18)	STR 9.B.1 (17)	
STR 8.A.2 (18)	STR 9.B.2 (17)	
STR 8.B.1 (17)	STR 9.A.1 (18)	
	STR 9.A.2 (18)	
STR 8.C.1 (16)	STR 9.C.1 (16)	STR
STR 8.C.2 (16)	STR 9.C.2 (16)	STR

-STR 2.A. (19)	
-STR 12.A.2 (19)	
-STR 12.B.1 (19)	
-STR 12.B.2 (19)	
-STR 13.A.1 (19)	
-STR 13.A.2 (19)	—STR 3.B.2 (8)

			-5	TR	2	1.A	1 (- 1	()	 9)-							C	5TF	२ ।	4.	С.	(18))	
			-5	TR	2	1.A	.2	(1)	9)-						 		5TI	र ।	4.	C.2	2 (18))	
			-5 ⁻	TR TR	2	1.B 1.B	5.1 	()	9)- - 9)-				_		 		5TF 5TF	र । र ।	4. 4.	D. D.2	2 (8) 8)	∕_ 	
				TR	15	5.A		()	9)-				_		 		STI	र ।	5.	B.	(8))	

		 _ST	R I	G	Δ	(ן או	 \							ST	R I	7	Δ. 1	2 (8)			
				0.	<u>∽</u> .		0,	/									<i>′</i> .	<u>∽.</u> ∠	- (
		I —ST	R I	6.	A.2	2 (18))			 -			-ST	 R 	6.	Β.	(16)	 		 —	
		–ST	I R I I	7.	Α.	(18))			 -			-ST	I R I I	6.	B.2	2 (16)			_	

_	INVERTERS	#6	ŧ	#7

	/	/	_	IN۱	/EF	RTE	RS	#	2	ŧ #	! 3	3	
					STI	R I	3.	C.	(8)			
					STI	R I	3.	C.2	2 (8)			
					STI	R I	3.	D.	(8)			
					STI	R I	3.	D.2	2 (8)			

	HIDWIZY NA			
STR I.B.I (15)		Project: MORENO VALLE Project Details: 694.96 kWstc, AHJ: MORENO V Engineering Approv	EY, CA 92553 639.8 kW AG (ALLEY, CITY C	3 C DF
	STRING LEGEND: I.A.2 (15) STRING LENGTH STRING ID # MPPT (A, B, C, OR D) INVERTER ID #			
		REVIS DESCRIPTION SCE SLD SCE SLD & PLOT PLAN	IONS DATE 4/9/2018 4/23/2018	REV 1 2
		ORIGINAL CONDUIT, SPECS	4/27/2018 5/1/2018	A B
		Sheet Title: STRIN LAY(GING DUT	
		Sheet Number: E Sheet Size: ARCH D - DESIGN & DRAFTING I RICHARD DOBE RICHARD DOBE MICHARD DOBE MICHARD DOBE MICHARD DOBE	. 36" x 24 BY: INS 268	1"
		Reviewed \$ Approv	ed by:	IG N

	Project:	
	MORENO VALLEY, CA 92553	3
	Project Details:	
	AHJ: MORENO VALLEY, CITY O)F
	Engineering Approval:	
NG		
(5		
ULE FRAME		
	KEVISIONS DESCRIPTION DATE SCE SLD 4/9/2018	REV
	SCE SLD # PLOT PLAN 4/23/2018 ORIGINAL 4/27/2018	2 A
	CONDUIT, SPECS 5/1/2018	В
	CONSTRUCTION	
	DETAILS	
	Sheet Number:	
	E1.3	
	Sheet Size: ARCH D - 36" x 24	."
	DESIGN ¢ DRAFTING BY:	
	RICHARD DOBBINS Printialation # PV-102216-011268	
		GN ∎
	Reviewed & Approved by:	FIED
	AU PV Install Professi	llation ional

	Array Configuration																	
						System	า: 694.9	6 kWst	c, 639.8	kW AC	2							
				1		То	tal PV I	Module	Qty: 2	044				1	I			
	Inverter I.D. #	Inv #1	Inv #2	Inv#3	Inv #4	Inv #5	Inv #6	Inv #7	Inv #8	Inv #9	lnv #10	lnv #11	lnv #12	lnv #13	Inv #14	lnv #15	lnv #16	lnv #17
	Inverter AC Power (kW):	33.30	33.30	33.30	40.00	40.00	40.00	40.00	40.00	40.00	40.00	33.30	40.00	40.00	40.00	40.00	33.30	33.30
PV Power (kWstc): 30.60 35.36 30.94 46.24 46.24 45.56 45.56 41.14 40.80 40.80 34.68 50.32 49.64 50.32 49.64 28.56											28.56							
	Inverter DC:AC Ratio	0.92	1.06	0.93	1.16	1.16	1.14	1.14	1.03	1.02	1.02	1.04	1.26	1.24	1.26	1.24	0.86	0.86
	Module Total Qty:	90	104	91	136	136	134	134	121	120	120	102	148	146	148	146	84	84
	String Qty:	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	String Length:	15	18	18	18	18	18	18	18	18	18	18	19	19	19	19	18	18
_◄	Max Open Circuit Voltage:	758	909	909	909	909	909	909	909	909	909	909	960	960	960	960	909	909
	Min Open Circuit Voltage:	610	732	732	732	732	732	732	732	732	732	732	773	773	773	773	732	732
JPF	Max Operating Voltage:	549	659	659	659	659	659	659	659	659	659	659	695	695	695	695	659	659
2	Min Operating Voltage:	498	597	597	597	597	597	597	597	597	597	597	630	630	630	630	597	597
	Max Short Circuit Current:	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
	Operating Current:	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9
	String Qty:	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	String Length:	15	18	18	18	18	17	17	17	17	17	17	19	18	19	18	16	16
<u>"</u> ם	Max Open Circuit Voltage:	758	909	909	909	909	859	859	859	859	859	859	960	909	960	909	808	808
	Min Open Circuit Voltage:	610	732	732	732	732	692	692	692	692	692	692	773	732	773	732	651	651
JPF	Max Operating Voltage:	549	659	659	659	659	622	622	622	622	622	622	695	659	695	659	585	585
2	Min Operating Voltage:	498	597	597	597	597	564	564	564	564	564	564	630	597	630	597	531	531
	Max Short Circuit Current:	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
	Operating Current:	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9
	String Qty:	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	1	1
	String Length:	15	16	19	16	16	16	16	16	16	16	16	18	18	18	18	16	16
L_	Max Open Circuit Voltage:	758	808	960	808	808	808	808	808	808	808	808	909	909	909	909	808	808
F	Min Open Circuit Voltage:	610	651	773	651	651	651	651	651	651	651	651	732	732	732	732	651	651
MP	Max Operating Voltage:	549	585	695	585	585	585	585	585	585	585	585	659	659	659	659	585	585
	Min Operating Voltage:	498	531	630	531	531	531	531	531	531	531	531	597	597	597	597	531	531
	Max Short Circuit Current:	23.9	23.9	11.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	11.9	11.9
	Operating Current:	17.9	17.9	9.0	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.9	9.0	9.0
	String Qty:				2	2	2	2	1	1	1		2	2	2	2		
	String Length:				16	16	16	16	19	18	18		18	18	18	18		
	Max Open Circuit Voltage:				808	808	808	808	960	909	909		909	909	909	909		
PT	Min Open Circuit Voltage:				651	651	651	651	773	732	732		732	732	732	732		
ИЫ	Max Operating Voltage:				585	585	585	585	695	659	659		659	659	659	659		
2	Min Operating Voltage:				531	531	531	531	630	597	597		597	597	597	597		
	Max Short Circuit Current:				23.9	23.9	23.9	23.9	11.9	11.9	11.9		23.9	23.9	23.9	23.9		
	Operating Current:				17.9	17.9	17.9	17.9	9.0	9.0	9.0		17.9	17.9	17.9	17.9		

CIRCUIT BREAKER (N) = NEW EQUIP. (E) =	EXISTING EQUIP.	E) L3 = LINE 3 (YELLOW) N = NEUTRAL (WHITE COUPMENT PAD COUPMENT PAD	E) G = GROUND (GREEN) = =	POSITIVE (RED) $= \text{NEGATIVE (BLACK)}$ AC5 CONDUIT DETAIL $(1) (2) (3) (1) (2) (2) (3) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$	Project: MORENO VALLEY, CA 92553 Project Details: 694.96 kWstc, 639.8 kW AC AHJ: MORENO VALLEY, CITY OF Engineering Approval:
(I) NUMERTER #11		TO DEDICATED IS A. 2.P BRARERTAG# OF PARALLEL SETSPHASE CONDUCTOR QTY, SIZE AND TYPE PER CONDUITDC I(1)2/STRINGAC I(1)3AWG #GCU THWN-2AC2(1)3AWG #GCU THWN-2AC3(1)6 MAXAWG #3CU THWN-2AC4(1)6 MAXAC5(2)3500 kcmilAL XHHW-2AC6(1)3AWG #4/O CU THWN-2AC7(1)3AWG #4/O CU THWN-2AC8(4)3AC9(4)3SOO kcmilAL XHHW-2AC1O(3)3GOO kcmilCU THWN-2	WIRE AND CONDUIT SCHEDULE NEUTRAL CONDUCTOR QTY, SIZE AND TYPE PER CONDUIT GROUND CONDL QTY, SIZE AND TYPE PER CONDUIT N/A N/A I AWG #6 E I AWG #8 CU THWN-2 I AWG #8 CL I AWG #8 CU THWN-2 I AWG #8 CL I AWG #8 CU THWN-2 I AWG #8 CL 2 MAX AWG #8 CU THWN-2 AWG #8 CL 2 MAX AWG #8 CU THWN-2 AWG #8 CL 1 AWG #1 AL XHHW-2 I AWG #8 CL 1 AWG #3/O AL XHHW-2 I AWG #3/O AL 1 AWG #3/O AL XHHW-2 I AWG #3/O AL 1 AWG #3/O AL XHHW-2 I AWG #3/O AL 1 AWG #3/O AL XHHW-2 I AWG #3/O AL 1 AWG #3/O AL XHHW-2 I AWG #3/O AL 1 AWG #3/O AL XHHW-2 I AWG #3/O	VCTOR TYPE IT # OF PARALLEL CONDUITS CONDUIT SIZE CONDUIT TYPE EST. DIST. SARE CU (1) N/A N/A 100 0 THWN-2 (1) 1" EMT 25 0 THWN-2 (1) 1" EMT 25 0 THWN-2 (1) 2" SCH40 PVC 200 0 THWN-2 (1) 2" SCH40 PVC 10 0 THWN-2 (1) 2" SCH40 PVC 10 0 THWN-2 (1) 2" SCH40 PVC 10 10 THWN-2 (3) 3" EMT 50 0 THWN-2 (3) 3" EMT 25 0 THWN-2 (3) 3" EMT 25 0 THWN-2 (3) 3" EMT 25 0 THWN-2 (3)	REVISIONS DESCRIPTION DATE REV SCE SLD 4/9/2018 SCE SLD & PLOT PLAN 4/23/2018 SCE SLD & A/2/2018 2 ORIGINAL 4/27/2018 A CONDUIT, SPECS 5/1/2018 B I I I
CIRCUIT ORIGIN CIRCUIT DESTINATION CONDUCTOR SPECIFICATIONS MATERIAL AMPACITY PER SIZE MADECITY PER SIZE MADECITY PER SIZE MADECITY PER SIZE <td>PV AC System Summary NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 771 Amps MAX CURRENT PER 690.8(B): 964 AmpsBESS AC System Summary NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 181 Amps MAX CURRENT PER 690.8(B): 227 AmpsV System Maximum Voltage: 480 Volts AC MAX CURRENT PER 690.8(B): 227 AmpsVoc Temp $25^{\circ}C - Voc$ Voc Temp $25^{\circ}C - Voc$Voc Temp $25^{\circ}C - Voc$MAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 25°C - Voc Voc Temp $25^{\circ}C - Voc$Voc Temp $25^{\circ}C - Voc$NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8</td> <td>Model Num Power Rating (W Nominal Voltage (V Battery Capacity (kV Nominal Voltage (V Weight (I Weight (I Data Source: MARCH AFB/RIVERSIDE Voc Max # of Temperature Correction x Voc X Modules in = Corrected Open Factor Series Circuit Voltage 1.084 x 46.6 x 19 = 959.5 Volts DC CONDUCTOR TEMPERATURE DERATING CONDUCTOR TEMPERATURE DERATING CONDUCTOR TEMPERATURE DERATING CORRECTI CIRCUIT ENVIRONMENT LOCAL 2% HEIGHT TEMP (*C) ROOF (in) 310.15(B)(3)(c) TEMP (*C) 310.15(B)(3)(c) TEMP (*C) 310.15(B)(3)(c) TEMP (*C) 2001</td> <td>Battery Inverter Specificationsber: EnergPort L3060AC):29000Max Utility Input Current (A):60.4AC):29000Max Utility Input Current (A):N/AAC):480Backup Output Current (A):N/AMh):64.5Max Surge Current (A):N/ACD):358.4CEC Efficiency:97.0%Ibs):1500Inverter Quantity:3PV Module SpecificationsIel Number:HANSOL HS340TD-AN3/eight (Ibs):49.6nsions (in):78.5 x 39.4 x 1.6@ STC (W):340Voc (VDC):46.6Vmp (VDC):38.0Voc Temp Coeff (%/°C):Isc (A):9.54Imp (A):8.95Module Quantity:2,044CONDUIT FILL DERATING (ON UNGROUNDED (CORRECTION (CONDUCTORS 310.15(B)(3)(a))N/A</td> <td>Maximum DC Voltage (V): 1000 Max Current MPPT A: 22.0 Max. MPPT Voltage (V): 250 Max Current MPPT B: 22.0 Max. MPPT Voltage (V): 530 Max Current MPPT C: 22.0 Min. MPPT Voltage (V): 530 Max Current MPPT D: 22.0 Min. MPPT Voltage (V): 530 Max Current MPPT D: 22.0 MPPT Quantity: 4 Inverter Quantity: 11 PV Inverter Type B Specifications Model Number: HUAWEI SUN2000-33KTL-US Power Rating (kW AC): 33.30 (3/N/PE) Max Output Current (A): 40.1 22.0 Max MPPT Voltage (V): 40.1 22.0 Max Output Current (A): 40.1 22.0 Max MPPT Voltage (V): 250 Max Current MPPT A: 22.0 Max MPPT Voltage (V): 850 Max Current MPPT B: 22.0 Max. MPPT Voltage (V): 850 Max Current MPPT C: 22.0 Min. MPPT Voltage (V): 460 Max Current MPPT D: 22.0 Min. MPPT Quantity: 4 Inverter Quantity: 6 Inverter Quantity: Inverter Quantity:<td>Sheet Number: ELECTRICAL DIAGRAM</td></td>	PV AC System Summary NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 771 Amps MAX CURRENT PER 690.8(B): 964 AmpsBESS AC System Summary NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 181 Amps MAX CURRENT PER 690.8(B): 227 AmpsV System Maximum Voltage: 480 Volts AC MAX CURRENT PER 690.8(B): 227 AmpsVoc Temp $25^{\circ}C - Voc$ Voc Temp $25^{\circ}C - Voc$ Voc Temp $25^{\circ}C - Voc$ MAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 227 AmpsMAX CURRENT PER 690.8(B): 25°C - Voc Voc Temp $25^{\circ}C - Voc$ Voc Temp $25^{\circ}C - Voc$ NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B): 1190 AmpsMAX CURRENT PER 690.8(A): 952 Amps MAX CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8(B)(1)MAX COMBINED = CURRENT PER 690.8	Model Num Power Rating (W Nominal Voltage (V Battery Capacity (kV Nominal Voltage (V Weight (I Weight (I Data Source: MARCH AFB/RIVERSIDE Voc Max # of Temperature Correction x Voc X Modules in = Corrected Open Factor Series Circuit Voltage 1.084 x 46.6 x 19 = 959.5 Volts DC CONDUCTOR TEMPERATURE DERATING CONDUCTOR TEMPERATURE DERATING CONDUCTOR TEMPERATURE DERATING CORRECTI CIRCUIT ENVIRONMENT LOCAL 2% HEIGHT TEMP (*C) ROOF (in) 310.15(B)(3)(c) TEMP (*C) 310.15(B)(3)(c) TEMP (*C) 310.15(B)(3)(c) TEMP (*C) 2001	Battery Inverter Specificationsber: EnergPort L3060AC):29000Max Utility Input Current (A):60.4AC):29000Max Utility Input Current (A):N/AAC):480Backup Output Current (A):N/AMh):64.5Max Surge Current (A):N/ACD):358.4CEC Efficiency:97.0%Ibs):1500Inverter Quantity:3PV Module SpecificationsIel Number:HANSOL HS340TD-AN3/eight (Ibs):49.6nsions (in):78.5 x 39.4 x 1.6@ STC (W):340Voc (VDC):46.6Vmp (VDC):38.0Voc Temp Coeff (%/°C):Isc (A):9.54Imp (A):8.95Module Quantity:2,044CONDUIT FILL DERATING (ON UNGROUNDED (CORRECTION (CONDUCTORS 310.15(B)(3)(a))N/A	Maximum DC Voltage (V): 1000 Max Current MPPT A: 22.0 Max. MPPT Voltage (V): 250 Max Current MPPT B: 22.0 Max. MPPT Voltage (V): 530 Max Current MPPT C: 22.0 Min. MPPT Voltage (V): 530 Max Current MPPT D: 22.0 Min. MPPT Voltage (V): 530 Max Current MPPT D: 22.0 MPPT Quantity: 4 Inverter Quantity: 11 PV Inverter Type B Specifications Model Number: HUAWEI SUN2000-33KTL-US Power Rating (kW AC): 33.30 (3/N/PE) Max Output Current (A): 40.1 22.0 Max MPPT Voltage (V): 40.1 22.0 Max Output Current (A): 40.1 22.0 Max MPPT Voltage (V): 250 Max Current MPPT A: 22.0 Max MPPT Voltage (V): 850 Max Current MPPT B: 22.0 Max. MPPT Voltage (V): 850 Max Current MPPT C: 22.0 Min. MPPT Voltage (V): 460 Max Current MPPT D: 22.0 Min. MPPT Quantity: 4 Inverter Quantity: 6 Inverter Quantity: Inverter Quantity: <td>Sheet Number: ELECTRICAL DIAGRAM</td>	Sheet Number: ELECTRICAL DIAGRAM
DC1PV STRINGINVERTERCOPPER90°CAWG #1055 Amps1TAGCIRCUIT ORIGINCIRCUIT DESTINATIONTERMINAL MATERIALTRADE SIZENUMBER OF PARALLEL CONDUCTORSAC1INVERTER TYPE AAC COMBINER PANELCOPPER75°CAWG #61AC2INVERTER TYPE BAC COMBINER PANELCOPPER75°CAWG #61AC3INVERTER TYPE AACCP/SWITCHGEARCOPPER75°CAWG #61AC4INVERTER TYPE BACCP/SWITCHGEARCOPPER75°CAWG #41AC5AC COMBINER PANELSWITCHGEARCOPPER75°CAWG #41AC5BATTERY INVERTERBATTERY COMBINERCOPPER75°CAWG #41AC6BATTERY INVERTERBATTERY COMBINERCOPPER75°CAWG #4/01AC7BATTERY COMBINERSWITCHGEARCOPPER75°CAWG #4/01AC8SWITCHGEARPULLBOXALUM75°C500 kcmil4AC9PULLBOXAC DISCONNECTALUM75°C500 kcmil4AC10AC DISCONNECTLINE SIDE CONN.COPPER75°C600 kcmil3	25 x 9.54 x1=11.9 Ampsx1.25=14.9 Amps14.9 Amps55.0 AmpsAMPACITY PER 310.15(B)(17)MAX CURRENT CURRENT# OF CURRENT# OF INVERTERS# OF CURRENT PER 690.8(A)(3)125% PER 690.8(B)(1)MAX CURRENT PER 690.8(B)(1)MAX CURRENT PER 690.8(B)(1)MAX CURRENT PER 690.8(B)(1)MAX CURRENT PER 690.8(B)(1)65 Amps 65 Amps48.2 x1=48.2 Amps 40.1 xx1.25=60.3 Amps 60.3 Amps85 Amps 620 Amps40.1 x1=40.1 Amps 48.2 xx1.25=50.1 Amps 50.1 Amps85 Amps 620 Amps $60.4 x$ 1=60.4 Amps 48.2 xx1.25=572.1 Amps 572.1 Amps230 Amps 1240 Amps $60.4 x$ 3=181.2 Amps 952.0 Ampsx1.25=1190.0 Amps1260 Amps $(48.2x11)+(40.1x6)+(60.4x3)$ =952.0 Amps 952.0 Ampsx1.25=1190.0 Amps1260 Amps $(48.2x11)+(40.1x6)+(60.4x3)$ =952.0 Amps 952.0 Ampsx1.25=1190.0 Amps	ROOFTOP, FREE AIR 37 N/A 37 0.91 ITY CHECK #1 CONDUCTOR TEMPERATURE DERATING AMPACITY CONDUCTOR AMPACITY LOCAL 2% AVG. HIGH TEMP (°C) EXPECTED OPERATING TEMP (°C) AMPACITY CORRECTION 310.15(B)(2)(a vs < 65	N/A 1.00 55 x 0.91 x 1. CONDUIT FILL DERATING CORRECTED AMPACITY CONDUCTOR 90°C TEMP DERATE COND # OF AMPACITY UNGROUNDED CORRECTION CONDUCTORS 310.15(B)(3)(a) 90°C TEMP DERATE COND 3 1.00 75 x 0.82 x 1.00 3 1.00 75 x 0.82 x 1.00 12 0.50 115 x 0.91 x 0.5 12 0.50 115 x 0.91 x 0.5 3 1.00 700 x 0.91 x 0.5 3 1.00 95 x 0.91 x 1.0 3 1.00 260 x 0.91 x 1.0 3 1.00 1400 x 0.91 x 1.0 3 1.00 1400 x 0.91 x 1.0	00 = 50.1 Amps 11.9 Amps < 50.1 Amps	Sheet Size: ARCH D - 36" x 24" DESIGN & DRAFTING BY: RICHARD DOBBINS # PV-102216-011268 SEPISOLAR POWER BY DESIGN Reviewed & Approved by: AD

(E) = EXISTING EQUIP. $ I = LINE I (BROWN)$ $ I = LINE 2 (ORANGE)$ $ I =$	$\langle \rangle$
AC5 CONDUIT DETAIL	
(N) SWITCHGEAR	
EATON POW-R-LINE (OR EQUIVALENT) MAIN BREAKER, METERING, DISTRIBUTION 480 VAC, 1200 A, 3-P	
50 A	
AC8 ¢ AC9 CONDUIT DETAIL	
L2 L2 L2 L2 L2 L2 L2 L2	Project:
- CANOPY 4 EQUIPMENT PAD BLDG EXTERIOR WALL ELECTRICAL ROOM TO UTILITY GRID TO UTILITY GRID TO UTILITY GRID TO UTILITY GRID	
GO A Image: A state of the	MORENO VALLEY, CA 92553
ED FROM INVERTER #7 FROM INVERTER FROM INVERTER #7 FROM INVERTER #7 FROM INVERTER FROM INVERTER FR	Project Details:
(N) PULLBOX POINT OF INTERCONNECTION (N) LINE SIDE TAP I 200 A I 200 A	AHJ: MORENO VALLEY, CITY OF
SHALL NOT EXCEED 25 FT (E) MAIN SERVICE DISCONNECT (E) MAIN SERVICE DISC	Engineering Approval:
(N) BATTERY COMBINER PANEL EATON P3AL4A4 (OR GOUVALENT) (I) MAIN SWITCHBOARD (I) MAIN SWITC	
(IV) ACC, 400 A, 3.P (IV) RECORT LICKT ASO VAC, 400 A, 3.P (IV) BESS METER LOCUS LATE 320 NEMA 3R, UL LISTED (IV) BESS METER LOCUS LATE 320 NEMA 3R, UL LISTED	
PER NEC 250.62, 250.64, \$ 250.66 TO BMU (E) GROUNDING ELECTRODE SYSTEM PER NEC 250.50 (E) GROUNDING ELECTRODE SYSTEM PER NEC 250.50	
BATTERY DISCO TYP.	
IN AC BATTERY ENERGPORT 13060 WIRE AND CONDUIT SCHEDULE	
# OF PHASE CONDUCTOR NEUTRAL CONDUCTOR # OF CONDUIT CONDUIT FST	
TAG PARALLEL QTY, SIZE AND TYPE QTY, SIZE AND TYPE QTY, SIZE AND TYPE PARALLEL CONDUCT CON	
DCI (I) 2/STRING AWG # 10 PV-WIRE N/A N/A I AWG # 6 BARE CU (I) N/A N/A 100	
AC1 (1) 3 AWG #6 CUTHWN-2 1 AWG #8 CUTHWN-2 1 AWG #8<	
AC3 (1) 6 MAX AWG #3 CU THWN-2 2 MAX AWG #8 CU THWN-2 (1) 2" SCH40 PVC 200 AC4 (1) 6 MAX AWG #4 CU THWN-2 2 MAX AWG #8 CU THWN-2 (1) 2" SCH40 PVC 200	
AC5 (2) 3 500 kcmil AL XHHW-2 I AWG #I AL XHHW-2 I AWG #I AL XHHW-2 (2) 3" SCH40 PVC 250	
AC6 (1) 3 AWG #4 CUTHWN-2 1 AWG #8 CUTHWN-2 1 AWG #8 CUTHWN-2 (1) 1" EMI 10 AC7 (1) 3 AWG #4/0 CUTHWN-2 1 AWG #8 CUTHWN-2 1 AWG #8 CUTHWN-2 (1) 1" EMI 10	
AC8 (4) 3 500 kcmil AL XHHW-2 I AWG #3/0 AL XHHW-2 I AWG #3/0 AL XHHW-2 (3) 4" SCH40 PVC I 75 AC9 (4) 3 500 kcmil AL XHHW-2 I AWG #3/0 AL XHHW-2 I AWG #3/0 AL XHHW-2 (3) 4" SCH40 PVC I 75	
ACIO (3) 3 600 kcmil CU THWN-2 I AWG #3/0 CU THWN-2 I AWG #3/0 CU THWN-2 (3) 3" EMT 25	REVISIONS
PV Inverter Type A Specifications	DESCRIPTIONDATEREVSCE SLD4/9/20181
Power Rating (kW AC): 40.00	SCE SLD & PLOT PLAN 4/23/2018 2 ORIGINAL 4/27/2018 A
Nominal AC Voltage (V): 480 (3/N/PE) Max Output Current (A): 48.2	CONDUIT, SPECS 5/1/2018 B
CEC Weighted Efficiency: 98.5% Maximum DC Voltage (V): 1000 Max Current MPPT A: 22.0	
DC Start Voltage (V): 250 Max Current MPPT B: 22.0 Max MPPT Voltage (V): 850 Max Current MPPT C: 22.0	
Battery Inverter Specifications Min. MPPT Voltage (V): 530 Max Current MPPT D: 22.0 Model Number: EnergPort L3060 MDDT Quantity 4	
Power Rating (W AC): 29000 Max Utility Input Current (A): 60.4 MPPT Quantity: 4 Nominal Voltage (VAC): 480 Backup Output Current (A): N/A Inverter Quantity: 11	
PV AC System Summary Battery Capacity (kWh): 64.5 Max Surge Current (A): N/A NOMINAL SYSTEM VOLTAGE: 480 Volts AC Nominal Voltage (VDC): 358.4 CEC Efficiency: 97.0%	
MAX CURRENT PER 690.8(A): 771 Amps Weight (lbs): 1500 Inverter Quantity: 3 MAX CURRENT PER 690.8(B): 964 Amps	
PV Module Specifications Nominal AC Voltage (V): 480 (3/N/PE) Model Number: HANSOL HS340TD-AN3 Max Output Current (A): 40.1	
NOMINAL SYSTEM VOLTAGE: 480 Volts AC MAX CURRENT PER 690.8(A): 181 Amps Dimonsions (in): 78 5 x 39 4 x 1 6 Maximum DC Voltage (V): 1000	
MAX CURRENT PER 690.8(B): 227 Amps PV System Maximum Voltage Calculation per NEC 030.7(A) Power @ STC (W): Maximum De Voltage (V): 1000 Max current MPPT A: 22.0 Dimensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 33.4 × 1.0 Dimensions (m): 78.3 × 33.4 × 1.0 Domensions (m): 78.3 × 34.4 × 1.0 Dimensions (m):	
I of all AC System Summary $25^{\circ}C - Voc$ VocMax # ofTemperatureVoc (VDC):46.6Max. MPPT Voltage (V):850Max Current MPPT C:22.0NOMINAL SYSTEM VOLTAGE:480 Volts ACVoc TempCoefficientCorrection X Voc X Modules in = Corrected OpenVoc Temp Coeff (%/°C):-0.31Min. MPPT Voltage (V):460Max Current MPPT D:22.0Nominal System SummaryVoc Temp Coeff (%/°C):-0.31Min. MPPT Voltage (V):460Max Current MPPT D:22.0	FIFCTRICAI
MAX CURRENT PER 690.8(A): 952 Amps Low Temp. Factor Series Circuit Voltage Isc (A): 9.54 Max Voltage (VDC): 1,500 MPPT Quantity: 4 MAX CURRENT PER 690.8(B): 1190 Amps 0.31%/°C x 27°C + 1 = 1.084 x 46.6 x 19 = 959.5 Volts DC Imp (A): 8.95 Module Quantity: 2,044 Inverter Quantity: 6	DIAGRAM
CIFICATIONS REQUIRED CONDUCTOR AMPACITY AMPACITY CHECK #1 CONDUCTOR TEMPERATURE DERATING CONDUIT FILL DERATING CORRECTED AMPACITY CALCULATION AMPACITY CHECK #2 VOLTAGE DROP	
$ \begin{array}{c} AMPACITY PER \\ B \\ C \\ E \\ E \\ B \\ C \\ C \\ E \\ C \\ C \\ E \\ C \\ E \\ C \\ C$	E2.0
#10 55 Amps 1.25 x 9.54 x 1.25 x 9.56 0.51 0.91 N/A 37 0.91 N/A 1.00 55 x 0.91 x 1.00 1.00 1.0	
INCK SPECIFICATIONS REQUIRED CONDUCTOR AMPACITY AMPACITY CHECK #1 CONDUCTOR TEMPERATURE DERATING CONDUIT FILL DERATING CORRECTED AMPACITY CALCULATION AMPACITY CHECK #2 VOLTAGE DROP L TRADE NUMBER OF AMPACITY PER 310.15(B)(16) & INVERTER # OF MAX DERATED MAX CURRENT CONDUCTOR # OF AMPACITY 90°C TEMP CONDUIT DERATED EST. VOLTAGE EST. VOLTAGE VOLTAGE VOLTAGE EST. VOLTAGE VOLTAGE EST. VOLTAGE EST. VOLTAGE	Sheet Size:
	ARCH D - 36" x 24"
STEE CONDUCTORS 310.15(B)(17) CURRENT INVENTERS 690.8(A)(3) OUTOONS(D)(17) TEMP (°C) TEMP (°C) 310.15(B)(2)(a) AMPACITY DERATE AMPACITY 690.8(B)(2) AMPACITY DISTANCE DISTANCE AWG #6 1 65 Amps 48.2 x 1 = 48.2 Amps x 1.25 = 60.3 Amps < 65	DESIGN & DRAFTING BY:
Sile CONDUCTORS 310.15(B)(17) CURRENT INVENTION GOUSIDICITY	DESIGN & DRAFTING BY: RICHARD DOBBINS # PV-102216-011268
Sile CONDUCTORS 310.5(B)(17) CURRENT INVENTION GOOLG(17) TEMP (°C) TEMP (°C) TEMP (°C) 310.15(B)(2)0 AMPACITY DEFATE AMPACITY DEFATE AMPACITY GOOLG(17) Ampacity<	DESIGN & DRAFTING BY: RICHARD DOBBINS # PV-102216-011268
She CONDUCTOR 310.15(B)(17) CURRENT HWR HG 690.8(A)(3) CONDUCTOR 310.15(B)(2)(A) CONDUCTOR 310.15(B)(3)(A) AMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CHARCE CAMPACITY CAMPACITY CHARCE CAMPACITY	ARCH D - 36" x 24" DESIGN & DRAFTING BY: RICHARD DOBBINS # PV-102216-011268 SepiSolar POWER BY DESIGN
BLC CORDUCTORS 310.15(B)(17) CURRENT INVENTION GEODE(1) CURRENT INVENTION GEODE(1) CURRENT CURRENT INVENTION GEODE(1) Current Current GEORE(1) CURRENT GEORE(1) <	Sheet Size: ARCH D - 36" x 24" DESIGN & DRAFTING BY: RICHARD DOBBINS # PV-102216-011268 SepiSolar POWER BY DESIGN Reviewed & Approved by:

Incident Energy at Invert	er (Note: calcs are for DC ene	rgy only)
Available power Working distance Exposure time	$P = 50.32 \text{ kW stc} \\ D = 18 \text{ in} = 7 \text{ sec} \\ I_E = P \times 0.286 \text{ J/cm}^2 = 7 \text{ sec} $	45.720 cm 3.434 cal/cm ²
Incident Energy if disconne	ect switch is closed	3.434 cal/cm
Required minimum PPE ra	ting Cate	gory 1

ARC FLASH	HAZARD PPE CATEGORIES								
CATEGORY	REQUIRED PERSONAL PROTECTIVE EQUIPMENT	INCIDENT ENERGY							
	SAFETY GLASSES, HARD HAT, FR SHIRT AND PANTS (OR FR COVERALLS), LEATHER PROTECTIVE GLOVES, AND LEATHER SHOES	0-4							
2	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS (OR FR COVERALLS), ARC RATED FACE SHIELD (OR ARC FLASH HOOD), LEATHER GLOVES, AND LEATHER SHOES	4-8							
3	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS, FR COVERALLS (IN ADDITION TO FR SHIRT AND PANTS), ARC FLASH HOOD, LEATHER GLOVES, AND LEATHER SHOES	8-25							
4	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS, FR COVERALLS (IN ADDITION TO FR SHIRT AND PANTS), FULL FLASH SUIT WITH HOOD, LEATHER GLOVES, AND LEATHER SHOES	25-40							
ANY ELECTR MUST BE D	ANY ELECTRICAL EQUIPMENT WITH AN INCIDENT ENERGY OF GREATER THAN 40 CAL/CM ^ 2 MUST BE DE-ENERGIZED BEFORE MAINTENANCE IS PERFORMED								
FOR ADDITI	ONAL INFORMATION ON ARC FLASH PPE AND RATING REQUIRE	MENTS, PLEASE							

REFERENCE THE STANDARD FOR ELECTRICAL SAFETY IN THE WORKPLACE (NFPA 70E)

- I.) RED BACKGROUND
- 2.) WHITE LETTERING
- 3.) MIN. 3/8" LETTER HEIGHT
- 4.) ALL CAPITAL LETTERS
- 5.) ARIAL OR SIMILAR FONT
- 6.) WEATHER RESISTANT
- MATERIAL, PER UL 969

	Project:
	MORENO VALLEY, CA 92553
	Project Details: 694.96 kWstc, 639.8 kW AC AHJ: MORENO VALLEY, CITY OF
	Engineering Approval:
	REVISIONS
	DESCRIPTION DATE REV SCE SLD 4/9/2018 1 SCE SLD # PLOT PLAN 4/23/2018 2 ORIGINAL 4/27/2018 A CONDUIT, SPECS 5/1/2018 B
CAUTION	
POWER FROM THIS BUILDING IS ALSO SUPPLIED FROM THE FOLLOWING POWER SOURCES WITH	
DISCONNECTS LOCATED AS SHOWN	Sheet Title: SAFETY PLACARDS & ELECTRICAL CALCS
	Sheet Number: E2.1
PV AC DISCONNECT	DESIGN & DRAFTING BY:
UTILITY METER AND	RICHARD DOBBINS Protestant # PV-102216-011268 SepiSolar
SERVICE BY QUALIFIED PERSONNEL ONLY	POWER BY DESIGN Reviewed & Approved by: AD

ANY EACH BOX OF TGMC CLAMPS dle Clamp- INSTALLATION GUIDE								
is Replaced Down fastening and provide superior galvanized or painted steel with self- to aluminum structures using the stainless- is analight for non-using and provide superior								
is applicable for securing and grounding so be installed using two dual heat treated off with flat washer and nylon locking nut. inetrate anodized and conformal coated nnection from the solar module to "'s short or long side of the aluminum tructions for alarm placement guidelings						Project: MORENO VALL	EY, CA 9255	53
e: if row = 7 modules, then Middle Clamp the end of the first and last module in a drilling of holes is needed, it is required						Project Details: 694.96 kWstc AHJ: MORENO \	, 639.8 kW / /ALLEY, CITY	AC OF
Ind-Clamps End-Clamps Top Clamp Locations						Engineering Approv	ral:	
kylinesolaraz.com Page 2								
xxV-XXK-X-XX 5: Parking Garage / Outdoor NS: CE · RoHS · DLC · UL								
king Garage / Gas Station 60W 7,020Im n								
x x						REVIS DESCRIPTION SCE SLD	DONS DATE 4/9/2018	REV
(K) Diffmatice Motion sensor 0000-3900K Yes Yes 000-4900K No No						SCE SLD & PLOT PLAN ORIGINAL CONDUIT, SPECS	4/23/2018 4/27/2018 5/1/2018	2 A B
	LINER OF TYPICAL CO	NFIGURATION		LECEND				
DLAR MONITORING SOLUTION phase electronic watt-hour meter for remote evoltaic systems. It features a smart communi- atically transmit meter data over cellular or Eth-	PV ARRAY	INVERTER(5)	INTERNET	Shielded CATS	_			
system owners and operators to easily manage h an advanced communications gateway. These com- commercial solar energy installation regardless of panel meter which installs easily using a standard socket base. lar-OSTM and SolarNOC monitoring platforms which	DIMENSIONS	LOCUS ENERGY COMM MODULE	METER MODULE	SOCKET METER		Sheet Title: EQUIP DATA S	MENT HEETS	
ations module. Additional system performance data can ers via RS-485 or Zigbee connections. All data is stored DS and SolarNOC platforms.	SPECIFICATIONS DATALOGGER		POWER	← 7.30 in →		Sheet Number: D Sheet Size:	.0	
play connectivity through a cellular or Ethernet network tely begin transmitting data without any configuration. y route uploads between the wireless and wired connec-	Processor ARM9 embed OS Custor versi Memory 128 MB RAM Display LCD screen I/O R5485 2 wire and 4 wire Modbus	aee I-PU on of Linux 2.5, OTA firmware updates	Accuracy At Voltage inputs 12 Max. Current input 22 Service Type Th Socket Type 16 COMPLIANCE ANSI 12.20 class 0.2%	uan Lazar (Juass 0.2%)) - 480 VAC) A ree phase, Wye or 4-wire Delta 6		DESIGN & DRAFTING	36" x 2	4"
ow cost installation 't require entrance into the building nd play activation isplay SOLAR	Zigbee COMMUNICATIONS L.AN R.145.10/1001 Celiular 3G GSM Networking DHCP or stat	Ethernet, fuil half duplex, auto polarity Ic	FCC Part ISB PTCRB AT8T Carrier Compliance PHYSICAL Enclosure NEMA i Weight 2 lbs 2 Dimensions 6.95" x Environment -20 br Werranty 5 year l	R Type zz 6.5" x 7.3" OC, all-weather mited warranty	SOLAR	Professional # PV-102216-011		ar.
蕴	LGATE 320 LOCUSENERGY,COM sale	es@locusenergy.com 877.562.87	36 6	Copyright 2015, Locus Energy. All rights reser	red.	Reviewed & Approv A	red by:	ABCEP RTIFIED Installation ofessional