SHEET INDEX

- TI.O COVER
- TI.I PROJECT NOTES
- PI.O PLOT PLAN
- AI.O SITE PLAN
- AI.I ROOF PV LAYOUT
- SI.O GROUND MOUNT DETAILS
- SI.I GROUND MOUNT DETAILS
- S2.0 ROOF MOUNTING & RACKING METHOD
- EI.O GROUND MOUNT ELECTRICAL LAYOUT
- EI.I ROOF MOUNT ELECTRICAL LAYOUT
- E1.2 ELECTRICAL ELEVATIONS
- EI.3 CONSTRUCTION DETAILS
- E1.4 ELECTRICAL DETAILS
- E2.0 GROUND MOUNT ELECTRICAL DIAGRAM
- E2.1 ROOF MOUNT ELECTRICAL DIAGRAM
- E2.2 SAFETY PLACARDS
- E2.3 FAULT CURRENT CALCULATIONS
- DI.O EQUIPMENT DATA SHEETS

PARTS LIST

Quantity Name

891 Hanwha Q Cells Q.Plus L-G4.2 345 PV Modules

448 SolarEdge P730 Optimizer

400 S-5!-H90 Clamp

400 Unirac L-foot

80 Unirac End Clamp

350 Unirac Mid Clamp

1310 Feet of Unirac SolarMount Rail

PROJECT DESCRIPTION

THIS 307.395 KWSTC PHOTOVOLTAIC (PV) SYSTEM (67.275KW ROOF MOUNTED \$ 240.12KW GROUND MOUNTED) IS TO BE INSTALLED AT THE RETREAT CENTER IN ANDOVER, NEW JERSEY. THE ENERGY PRODUCED BY THE PV SYSTEM SHALL BE INTERCONNECTED WITH THE UTILITY GRID THROUGH THE EXISTING ON-SITE ELECTRICAL EQUIPMENT VIA A SUPPLY SIDE CONNECTION IN THE MAIN SERVICE PANEL. THIS PROJECT DOES NOT INCLUDE STORAGE BATTERIES.

SCOPE OF WORK

(195) ROOF MOUNTED PV MODULES (TOTAL: 4,188 SQ. FT.) (696) GROUND MOUNTED PV MODULES (TOTAL: 14,949 SQ. FT.) (7) 30.0 kW INVERTERS (1) 20.0 kW INVERTER (448) SOLAREDGE POWER OPTIMIZERS (400) ATTACHMENT POINTS @ 41" O.C. MAX. (I) AC DISCONNECT, 480 VAC, NEMA 3R (I) AC DISCONNECT, 240 VAC, NEMA 3R (2) AC COMBINER PANELS, 480 VAC, NEMA 3R (I) PV METER, 240 VAC, NEMA 3R (1) TRANSFORMER, 300 kVA, NEMA 3R, PV-SIDE: 277/480 VAC, UTILITY-SIDE: 120/208 VAC

SITE SPECIFICATIONS

OCCUPANCY CATEGORY: II DESIGN WIND SPEED: 115 MPH EXPOSURE CATEGORY: B GROUND SNOW LOAD: 25 PSF

GOVERNING CODES

2014 NATIONAL ELECTRICAL CODE 2015 IBC (AS AMENDED BY STATE) 2015 INTERNATIONAL ENERGY CONSERVATION CODE 2015 INTERNATIONAL MECHANICAL CODE 2015 INTERNATIONAL FIRE CODE UNDERWRITERS LABORATORIES (UL) STANDARDS OSHA 29 CFR 1910.269

roject:

ANDOVER, NJ 07821

oject Details:

307.395 kWstc, 230.00 kW AC AHJ: GREEN, TOWNSHIP

Engineering Approval:

REVIS	IONS DATE	DEV				
		KEV				
	71712010	R				
	7/17/2010					
	1/17/2010					
Sheet Title:						
COVER						
Sheet Number: TI.O						
Sheet Size: ARCH D - 36" x 24"						
DESIGN & DRAFTING BY: CLARK FLEMING						
"Do not pray for an e. the strength to endu - Bruce Lee	asy life, pray for re a difficult one."	,				
Sep Sep	i Sola	B K				
Reviewed & Approv	ad by:					

RD

CONTRACTOR NOTES

- I.) THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND NOTIFY THE SYSTEM DESIGN ENGINEER OF ANY DISCREPANCIES BETWEEN EXISTING CONDITIONS AND DRAWINGS.
- 2.) THE CONTRACTOR SHALL SUPPLY AND INSTALL ALL WORK AS SHOWN IN THE CONSTRUCTION DOCUMENTS UNLESS OTHERWISE NOTED. ALL WORK SHALL BE PERFORMED IN AN ORDERLY. WORKMAN-LIKE AND SAFE MANNER BY WORKERS SKILLED AND EXPERIENCED IN THEIR TRADES.
- 3.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL INSPECTIONS TO BE WITNESSED BY THE AHJ AND/OR THE OWNER. THE CONTRACTOR SHALL WORK WITH THE OWNER'S INSPECTION AGENCY TO PLAN THE INSPECTIONS, AND NOTIFY ALL PARTIES INVOLVED SUFFICIENTLY IN ADVANCE TO ALLOW THE INSPECTIONS TO TAKE PLACE IN A TIMELY MANNER AND NOT DELAY THE PROGRESS OF THE WORK. THE OWNER AND SYSTEM DESIGN ENGINEER WILL NOT BE RESPONSIBLE FOR SCHEDULING, ARRANGING OR COORDINATING THE INSPECTIONS.
- 4.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING THE AREAS WHERE WORK IS TAKING PLACE. AS WELL AS ANY ADJOINING AREAS WHICH MAY BE AFFECTED BY THE WORK, TO PREVENT SUBJECTING THE OCCUPANTS, STRUCTURES, VEHICLES, EQUIPMENT, OR ANY OTHER PARTS OR CONTENTS OF THE SITE TO HAZARD OR DAMAGE.
- 5.) CONTRACTOR SHALL FURNISH ALL NECESSARY BOXES, OUTLETS, SUPPORTS, CONDUITS, FITTINGS, AND ACCESSORIES TO FULFILL APPLICABLE CODES, REGULATIONS, BUILDING STANDARDS, AND THE BEST PRACTICE OF THE TRADE FOR THE INSTALLATION OF ELECTRICAL WORK.
- 6.) THE CONTRACTOR SHALL, AT ALL TIMES DURING THE WORK, MAINTAIN ACCESSIBILITY FROM THE STREET TO ALL FIRE HYDRANTS, POWER OR LIGHT POLES, AND SIMILAR UTILITY AND PUBLIC SERVICE ITEMS WITHIN OR ADJACENT TO THE CONSTRUCTION SITE.
- 7.) WORK SHALL NOT RESTRICT CLEAR AND UNOBSTRUCTED ACCESS TO ANY WATER OR POWER DISTRIBUITION FACILITIES (POWER POLES, PULLBOXES, TRANSFORMERS, VAULTS, PUMPS, VALVES, METERS, APPURTENANCES, ETC.) OR TO THE LOCATION OF THE HOOKUP.
- 8.) THE OWNERS AND THE AHJ SHALL BE NOTIFIED IN WRITING IN ADVANCE OF ANY REQUIRED CONSTRUCTION OPERATION THAT WILL INVOLVE INTERRUPTION OF THE HEATING, WATER, FIRE PROTECTION SYSTEMS, TELEPHONE, GAS OR ELECTRICAL SERVICES TO THE OTHER BUILDINGS AND AREAS OF THE SITE. THE CONTRACTOR SHALL COORDINATE ANY REQUIRED SHUTDOWN OF THE UTILITIES WITH THE OWNERS, THE AHJ, AND THE UTILITY COMPANY.
- 9.) UPON REVIEW OF ELECTRICAL DRAWINGS, THE ELECTRICAL CONTRACTOR SHALL INFORM THE SYSTEM DESIGN ENGINEER OF ANY DISCREPANCIES OR REQUEST CLARIFICATION, IF NECESSARY, CONCERNING THE INTENT OF THE PLANS AND SPECIFICATIONS TO PROVIDE A COMPLETE ELECTRICAL INSTALLATION.
- IO.) THE CONTRACTOR SHALL COORDINATE HIS WORK WITH OTHER CONTRACTORS WHOSE WORK MIGHT AFFECT THIS INSTALLATION. CONTRACTORS SHALL ARRANGE ALL PARTS OF THIS WORK AND EQUIPMENT IN PROPER RELATION TO THE WORK AND EQUIPMENT OF OTHERS AND WITH BUILDING CONSTRUCTION AND ARCHITECTURAL FINISH SO THAT IT WILL HARMONIZE IN SERVICE AND APPEARANCE.
- II.) THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING WITH THE OWNER'S INSPECTION AGENCY TO ARRANGE FOR INSPECTIONS RELATED TO ALL SPECIAL INSPECTIONS IN A TIMELY MANNER, AND SHALL BE PRESENT AS REQUIRED AT THE INSPECTIONS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSURING THAT THE APPROPRIATE SUBCONTRACTORS ARE PRESENT DURING TESTS AND INSPECTIONS OF THE SYSTEMS FOR WHICH THE SUBCONTRACTORS ARE RESPONSIBLE.
- 12.) WHERE SNOW AND ICE SHEDDING FROM THE PV ARRAY OR BALANCE OF SYSTEM COMPONNETS MAY CAUSE A HAZARD TO OCCUPANTS BELOW, PROTECTIVE SNOW & ICE GUARDS SHALL BE INSTALLED.

PHOTOVOLTAIC NOTES:

- I.) ALL ASPECTS OF WORK RELATED TO THE SOLAR PHOTOVOLTAIC (PV) SYSTEM SHALL BE IN ACCORDANCE WITH ALL STATE AND LOCAL CODES, UTILITY REQUIREMENTS AND THE NEC, ESPECIALLY ARTICLE 690.
- 2.) SOLAR PV MODULE FRAMES SHALL BE BONDED TO RACKING RAIL OR BARE COPPER E.G.C. PER THE MODULE MANUFACTURER'S LISTED INSTRUCTION SHEET.
- 3.) SOLAR PV SYSTEMS SHALL BE GROUNDED IN ACCORDANCE WITH NEC 690 PART V. GROUNDING.
- 4.) COMBINER BOXES, FUSING, WIRE SIZES, QUANTITIES AND CONDUIT SIZES BETWEEN SOLAR ARRAYS AND INVERTERS TO BE VERIFIED BY CONTRACTOR WITH SOLAR MODULE AND INVERTER MANUFACTURERS BEFORE INSTALLATION.
- 5.) ALL PV SOURCE CIRCUIT CONDUCTORS AND CONNECTORS SHALL BE SUPPORTED AND SECURED WITHOUT EXCESSIVE STRESS. NO WIRING SHALL BE PERMITTED TO TOUCH THE ROOF SURFACE.
- G.) PV SOURCE CIRCUIT CONDUCTORS EXPOSED BETWEEN ARRAYS SHALL BE SECURED ON BOTH SIDES. AND BE PROTECTED FROM PHYSICAL DAMAGE AND ABRASION. INCLUDING FROM EDGES OF RACKING. CHANNEL EDGES, WIRE TRAYS, ETC.
- 7.) ANY CABLE TIES USED SHALL BE HEAT STABILIZED (-40C TO 105C), UV STABILIZED AND OUTDOOR RATED, SUITABLE AND DURABLE FOR THE ENVIRONMENT AND LIFE OF THE PV SYSTEM.
- 8.) WHERE EXPOSED TO SUNLIGHT, CONDUCTORS SHALL BE LISTED AND MARKED AS SUNLIGHT RESISTANT. 9.) ALL EQUIPMENT GROUND CONDUCTORS SMALLER THAN AWG #6 SHALL BE PROTECTED FROM PHYSICAL
- DAMAGE BY AN IDENTIFIED RACEWAY OR CABLE ARMOR UNLESS INSTALLED WITHIN THE HOLLOW SPACES OF THE FRAMING MEMBERS OF BUILDINGS OR STRUCTURES AND WHERE NOT SUBJECT TO PHYSICAL DAMAGE.
- IO.) MODULE/OPTIMIZER AND HOMERUN CONDUCTOR BEND RADIUS SHALL NOT BE LESS THAN 8 TIMES THE CONDUCTOR DIAMETER. UNLESS OTHERWISE SPECIFIED BY THE MANUFACTURER.
- I I.) DO NOT STEP ON, OR DROP PV MODULES (EVEN A FEW INCHES). MAINTAIN SPACING BETWEEN TWO MODULES AT MINIMUM PER MANUFACTURER'S REQUIREMENTS. DO NOT INSTALL MODULES SUCH THAT THEY ARE SUBJECTED TO MECHANICAL STRESS OR TORSION.
- I 2.) ALL PV ARRAY WIRING SHALL BE SECURED WITH UV RESISTANT SUPPORT METHODS AT FREQUENT INTERVALS SUCH THAT NO CONDUCTORS ARE HANGING. SPLIT LOOM OR EQUIVALENT, CONDUIT SLEEVES WITH PROTECTIVE FITTING OR BELL ENDS, AND/OR METALLIC CONDUIT SHALL BE USED TO PROTECT ALL PV CONDUCTORS AND CONNECTORS, WHERE EXPOSED TO POSSIBLE DAMAGE.

EQUIPMENT NOTES:

- I.) ALL MATERIALS, SUPPLIES, AND EQUIPMENT SHALL BE LISTED, USED, AND INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INSTRUCTIONS, AND APPLICABLE NATIONALLY RECOGNIZED TESTING LABORATORY (NRTL) REQUIREMENTS.
- 2.) ALL EQUIPMENT SHALL BE RATED FOR THE ENVIRONMENT IN WHICH IT IS INSTALLED.
- 3.) WORKING SPACE AROUND ELECTRIAL EQUPMENT SHALL COMPLY WITH NEC 110.26.
- 4.) THE EXACT LOCATION AND ELEVATION OF ALL SWITCHES, JUNCTION BOXES, RECEPTACLES, ETC. SHALL BE DETERMINED FROM THE SYSTEM DESIGN ENGINEER'S DRAWINGS.
- 5.) ALL JUNCTION BOXES, COMBINER BOXES, AND DISCONNECTS SHALL BE INSTALLED IN AN ACCESSIBLE LOCATION.
- 6.) PROVIDE NEMA 3R RATED EQUIPMENT OR BETTER WHERE EXPOSED TO OUTDOORS. 7.) WHERE SIZES OF RACEWAYS OR BOXES ARE NOT INDICATED ON THE DRAWINGS, THE CONTRACTOR SHALL SIZE THESE ITEMS AS REQUIRED FOR THE INSTALLATION.
- 8.) ALL VERTICAL RUNS OF CONDUIT OR TUBING TERMINATING IN THE BOTTOM OF WALL BOXES OR CABINETS OR SIMILAR LOCATIONS, SHALL BE PROTECTED FROM THE ENTRANCE OF FOREIGN MATERIAL PRIOR TO THE INSTALLATION OF CONDUCTORS.
- 9.) METAL RACEWAYS, METAL ENCLOSURES OF ELECTRICAL DEVICES AND EQUIPMENT, MODULE FRAMES, AND OTHER EQUIPMENT SHALL BE COMPLETELY GROUNDED IN ACCORDANCE WITH THE NEC.
- IO.) PROPER HARDWARE FOR A COMPLETE GROUNDING AND BONDING SYSTEM SHALL BE INSTALLED BY THE CONTRACTOR, IF NECESSARY.
- II.) GROUNDING RODS SHALL HAVE A RESISTANCE TO GROUND OF 25 OHMS OR LESS AND SHALL BE 5/8" x 8' MIN, COPPER-BONDED STEEL. ALL GROUND CLAMPS USED SHALL BE UL 467 LISTED.
- I 2.) ALL PVC CONDUIT EXPOSED TO SUNLIGHT SHALL BE SCHEDULE 80 AND MARKED AS SUNLIGHT RESISTANT. ALL UNDERGROUND PVC CONDUIT SHALL BE SCHEDULE 40 OR 80.

- ELECTRICAL NOTES:
- I.) ELECTRICAL POWER MUST BE SHUT OFF PRIOR TO THE CONTRACTOR PERFORMING ANY WORK IN RACEWAYS WITH LIVE ELECTRICAL CIRCUITS OR ANY OTHER EQUIPMENT. WHEN SWITCHES OR CIRCUIT BREAKERS ARE OPENED FOR WORK ON ELECTRICAL EQUIPMENT OR WIRING, SIGNS OR TAGS SHOULD BE INSTALLED AT THE SWITCH OR BREAKER STATING THAT WORK IS BEING PERFORMED ON THEM. INCLUDE THE TIME, DATE, AND CONTRACTOR'S NAME ON THE SIGN OR TAG. IF DEVICE IS LOCKABLE, IT SHOULD BE PADLOCKED.
- 2.) THE ELECTRICAL WORK SHALL COMPLY WITH THE REQUIREMENTS OF THE AHJ, NATIONAL FIRE PROTECTION AGENCY (NFPA), NATIONAL ELECTRICAL CODE (NEC), AND OSHA.
- THEN CONTRACTOR SHALL FOLLOW THE PHASING SCHEMES PROVIDED IN THE ELECTRICAL DIAGRAM. 600 VOLTS AC, UNLESS OTHERWISE NOTED.
- 3.) PHASING OF NEW CONDUCTORS TO MATCH EXISTING CONDUCTORS. IF INSTALLATING A NEW CIRCUIT, 4.) ALL CONDUCTORS SHALL BE COPPER, RATED FOR 90°C WET ENVIRONMENT, AND 1000 VOLTS DC OR 5.) GROUNDING ELECTRODE CONDUCTOR (G.E.C.) SHALL BE CONTINUOUS AND/OR IRREVERSIBLY
- SPLICED/WELDED. 6.) FLEXIBLE, FINE-STRANDED CABLES SHALL BE TERMINATED ONLY WITH TERMINALS, LUGS, DEVICES, OR CONNECTORS THAT ARE IDENTIFIED AND LISTED FOR SUCH USE PER NEC 690.3 I (F).
- 7.) ALL WIRES SHALL BE IDENTIFIED BY CIRCUITS IN ALL CABINETS, BOXES, WIRING TROUGHS, AND OTHER ENCLOSURES, AND AT ALL TERMINAL POINTS, I.E., RECEPTACLES, MECHANICAL LUGS, COMPRESSION FITTINGS. THE CIRCUIT DESIGNATIONS SHALL BE AS SHOWN ON THE CONTRACT DRAWINGS OR AS DIRECTED BY THE SYSTEM DESIGN ENGINEER. LABELS OR TAGS SHALL BE APPLIED TO WIRES SO THAT THEY WILL BE READILY VISIBLE.
- 8.) FUSES FOR SWITCHES SHALL BE CURRENT-LIMITING TYPE WITH A MINIMUM INTERRUPTING CAPACITY OF 200,000 AMPERES RMS (UNLESS OTHERWISE NOTED) AND OF THE CONTINUOUS CURRENT RATINGS AS INDICATED ON THE DRAWINGS OR AS RECOMMENDED BY THE MANUFACTURER.

- 13.) ALL CONDUIT SHALL BE MOUNTED AT A MINIMUM OF 1 INCHES ABOVE THE ROOF SURFACE.

EL	EC	TRICAL LEGEND
	=	CIRCUIT CONDUCTORS
	=	EQUIPMENT GROUNDING CONDUCTO
	=	TERMINAL BLOCK
	=	FUSE
600	=	CIRCUIT BREAKER
	=	THROW SWITCH (KNIFE-BLADE)
	=	RECLOSING CIRCUIT BREAKER
	=	RECLOSING DISCONNECT/RELAY
	=	GROUNDING ELECTRODE SYSTEM
	=	PV MODULE
	=	INVERTER
	=	MICROINVERTER
	=	POWER OPTIMIZER
	=	METER/MONITORING DEVICE
	=	TRANSFORMER
G	=	GENERATOR
-•	=	TRANSFER SWITCH
1	=	BATTERY

CURRENT TRANSFORMER (CT)

SITE/	'AF	RAY PLAN LEGEND
	=	CONDUIT ROUTES
	=	CONDUIT ROUTES (UGND OR INDOOI
	=	PV MODULE
	=	PV EQUIPMENT
	=	RAFTER/TRUSS
	=	STANDING SEAM
0	=	VENT
	=	CHIMNEY
	=	SKYLIGHT
0	=	HVAC UNIT
	=	ROOF HATCH
	=	PV ATTACHMENT FLASHING
	=	RACKING RAIL
	=	SETBACKS/PATHWAYS
$\langle \neg \rangle$	=	SWINGING DOOR
\bigcirc	=	TREE/BUSH

ELEC. LEGEND - 208 VAC

LI	=	LINE I TERMINAL (PHASED BLACK)
L2	=	LINE 2 TERMINAL (PHASED RED)
L3	=	LINE 3 TERMINAL (PHASED BLUE)
Ν	=	NEUTRAL TERMINAL (PHASED WHITE)
G	=	GROUND TERMINAL (PHASED GREEN)

ELEC). L	<u>EGEND - 480 VAC</u>
LI	=	LINE I TERMINAL (PHASED BROWN)

L2	=	LINE 2 TERMINAL (PHASED ORANGE)
L3	=	LINE 3 TERMINAL (PHASED YELLOW)
Ν	=	NEUTRAL TERMINAL (PHASED WHITE)
G	=	GROUND TERMINAL (PHASED GREEN)

 $\left| + \right|$

G

- = POSITIVE TERMINAL (PHASED RED)
- = NEGATIVE TERMINAL (PHASED BLACK)
- = GROUND TERMINAL (PHASED GREEN)

Project: ANDOVER,	NJ 0782 I	
Project Details:	230 00 kW	۲ AC
AHJ: GREEN,	TOWNSHIP	<i>I</i> x.
	aı.	
REVIS DESCRIPTION ORIGINAL	DATE 6/15/2018	REV A
LAYOUT	7/7/2018	D C
■ .		
Sheet Title: PROJECT	- NOTES	
Sheet Title: PROJECT	NOTES	
Sheet Title: PROJECT Sheet Number:	- NOTES	
Sheet Number: T I Sheet Size: ARCH D -	- NOTES . I . 36" x 2.	
Sheet Title: PROJECT Sheet Number: TI Sheet Size: ARCH D - DESIGN & DRAFTING F CLARK FLEMING	- NOTES . . . 36" x 2.	
Sheet Title: PROJECT Sheet Number: TI Sheet Size: ARCH D - DESIGN & DRAFTING F CLARK FLEMING "Do not pray for an ea the strength to endur - Bruce Lee	- NOTES . 1 . 1 . 36" x 2. . 36" x 2. . 37: 	
Sheet Title: PROJECT Sheet Number: TI Sheet Size: ARCH D - DESIGN & DRAFTING F CLARK FLEMING "Do not pray for an ea the strength to endur - Bruce Lee SEP	NOTES . 1 36" x 2 37: asy life, pray for re a difficult one."	

RD

							-							
SYMBOL	NAME	DESCRI	PTION				_							
	ROOFTOP PV MOD.	HANWH	ia q-cel	LL QPLUS	5 G4.2	345								
	STANDING SEAM	2" HEIG	GHT AT 4	" O.C.	TYP.									
	RACKING RAIL	UNIRAC	SOLAR	MOUNT	RAIL									
Ô	RACKING ATTACHMENT	S-5!-HS	90 CLAN	1P										
0	RACKING ATTACHMENT	UNIRAC	C END CL	AMP AN	ID MID	CLAMP	_							
	FIRE SETBACK	CA FIRE 4' TYP.	REQUIRED) PATHWA	YS		_							
									-	41" TYP.	+			
						$\left \right\rangle$		$\left \right\rangle$	$\left \right\rangle$	\sum			$\left \right\rangle$	
					- 									
							- 39'-	$ \frac{1}{2} -$						
			 			1				.	· · · · ·	 		
							<u> </u>	 				.	 	
							-39'-	<u>+</u> "-	2			p		₽
									0					
							-39'-	<u> </u> "-						
							<u> </u>			φ	φ <u>.</u>			P
							- 39'-	<u> </u> " –		• · · · · ·				
				 				2						
							<u> </u>	,				.	 	
							-39'-	<u>1</u> "-				 		
								1	1	I	I			I
												41"		

- 3 ft **-** 5 ft **- -** 10 ft **-**

SCALE: |" = 5'

	PARTS LIST
Quantity	Name
80	Unirac End Clamp
100	SolarEdge Optimizer
195	Hanwha Q Cells Q.Plus L-G4.2 345 PV Modules
350	Unirac Mid Clamp
400	S-5!-H90 Clamp
400	Unirac L-Foot
1310	Feet of Unirac SolarMount Rail

RIDGE

EAVE

Reviewed & Approved by:

RD

CERTIFIED PV Installation Professional

		6 696 MODULES TOTAL	A 1 5WP2	A 2 A 3 4P2	A 4 4P2 5F	A 5 2 5P	A 6 2 5P2
RACKING C SCALE: NTS	CONFIGURATIO	N (PER MFR)					
		POST SCH	IEDULE				
SYMBOL	MARK	DESCRIPTION	١	LENGTH	PIECES	DETAIL	

	POST SCHEDULE								
SYMBOL	MARK	DESCRIPTION	LENGTH	PIECES	DET				
'X' # 'X' # or	А	CEE 8X3 POST	14'-2"	68	A1/S-3				
	-	CEE 8X3 POST (EQUIPMENT POST TO BE FIELD LOCATED)	15'-6"	4	-				
PER PLAN									
POST SETTING	<u>S NOTES:</u> IMENSION	IS SHOWN ARE CENTERLINE TO CENTERLIN	E OF POST						

2. REFERENCE DETAIL A1/S-301 FOR ADDITIONAL INFORMATION ON REQUIRED POST EMBED DEPTHS . POST LENGTH INCLUDES ADDITIONAL MATERIAL TO ALLOW FOR TOPOGRAPHICAL VARIANCE

			BAY SCHEDULE				
			BAYS	F	PURLINS		
TYPE	QTY.	POST-POST	DESCRIPTION	MARK	#/BAY	PCS.	DETAIL
4P2	4	SEE BAY PLAN	Q.PLUS L-G4.2 345 PORTRAIT MODULES 4 WIDE x 2 HIGH AND 25.0° TILT	Z4	4	16	G8/S-301
5EP2	6	SEE BAY PLAN	Q.PLUS L-G4.2 345 PORTRAIT MODULES 5 WIDE x 2 HIGH WITH 1 CANTILEVER EAST SIDE AND 25.0° TILT	Z5E	4	24	A10/S-301
5P2	16	SEE BAY PLAN	Q.PLUS L-G4.2 345 PORTRAIT MODULES 5 WIDE x 2 HIGH AND 25.0° TILT	Z5	4	64	C10/S-301
5WP2	6	SEE BAY PLAN	Q.PLUS L-G4.2 345 PORTRAIT MODULES 5 WIDE x 2 HIGH WITH 1 CANTILEVER WEST SIDE AND 25.0° TILT	Z5W	4	24	E10/S-301
6P2	30	SEE BAY PLAN	Q.PLUS L-G4.2 345 PORTRAIT MODULES 6 WIDE x 2 HIGH AND 25.0° TILT	Z6	4	120	G10/S-301
NOTES	THIS BAY	<u>/</u>	ZEE 16 GA. GALVANIZED UNLESS NOTED OTHERWISE.				

TOP CHORDS ARE 137" x 4" x 4 3/4" CEE 14 GA. GALVANIZED UNLESS NOTED OTHERWISE.

LOWER KNEE BRACES ARE 48 1/8" x 2" SQ. 15 GA. GALVANIZED UNLESS NOTED OTHERWISE.

4. UPPER KNEE BRACES ARE 75 1/2" x 2" SQ. 15 GA. GALVANIZED UNLESS NOTED OTHERWISE

	STAN
	MODULE_ END CLAMP
STRUCTURAL CALCULATIONS	
QIY WEIGHIEA. IUIAL	
1000000000000000000000000000000000000	PV MODULE-
$TTACHMENT 400 \times 1.50 LBS = 600 LBS$	
MICRO/OPT. $100 \times 2.34 \text{ LBS} = 234 \text{ LBS}$	
TOTAL WEIGHT: 12212 LBS	
ARRAY AREA: 4188 SQ. FT.	
DEAD LOAD: 2.9 PSF	
POINT LOAD: 30.5 LBS	S5! CLAMP
	L-FOOT-
	RACKING RAIL
	MOUNTING PLAN VIEW I SCALE: " = 8"

	Ē	S	TR 3.1	(38)			8			STR :	3.2 (38)		TE .	E .			STR	۲ 3.3 (40)	
		S	TR 4.1	(38)		B		E E		STR	4.2 (38	5) 8 1	E				STR	2 4.3 (4	1O)	
		S À	TR 5.1	(38)		B				STR	5.2 (38		E E				STR	₹ 5.3 (<i>i</i>	40)	
		S	ГR G. I	(3 <i>8</i>)						STR	6.2 (38						STR	2 6.3 (4	+O)	
		S S	TR 7.1	(38)		E E				STR	7.2 (38) B B B B B B B B B B B B B B B B B B B	B				STR	2 7.3 (4	4O)	E Contraction of the second se
	8		5TR 8.	I (38)_	8		8		B	STR	8.2 (38	5)		8		3	STR	۲ 8.3 (40)	
$\left \right\rangle$	I I I I I I I I I I I I I I I I I I I																			-8

	STR 3	5.1 (38)				STR 3	3.2 (38)]					STR 3.3	(40)	
	STR 4	1.1 (38) •		g B		STR	4.2 (38	<u>∎</u> 3)					STR 4.3	(40)	
	STR 5	5.1 (38) •				STR S	5.2 (38	日) 日			B		STR 5.3	(40) I	
	STR G	.1 (38)				STR 6	6.2 (38		E				BTR 6.3	(40)	
	STR 7	7.1 (38)_ ∎ ∎			E -	STR 7	7.2 (38)]	E E				STR 7.3	(40)	
	STR a	8.1 (38)				STR	8.2 (38						BTR 8.3	(40)	

			STR 3	3.1 (38)			8		3	STR	3.2 (i	38)		E E	Ē		E B		E E	STR 3	.3 (4C	
<u>×</u>																						
			STR -	4.1 (38)	E	Ë		3	ST	R 4.2 ((38)		E C	Ē		E E			STR 4	.3 (40)	
			STR 5	5.1 (38)					3	STI	₹ 5.2 (38)			- - - - - - - - - - - - - - - - - - -		E E	B	B	STR 5	₽ .3 (40)	
			STR 6	6.1 (38)						STR	R 6.2 (38)	B B		-8					STR 6	.3: (40)	
	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		STR 7	7.1 (38)						STR	27.2 (A	38)			-E	E E				STR 7	.3 (40)	
E		8	STR	8.1 (38	5) e		E E		9	₽ ST	R 8.2 ((38)		B	Ē				Ê	STR 8	₽ .3 (40	

	-	

EQUIPMENT POST	- INVERTER W/ DC DISCONNECT (QTY. 6)	
NVERTER INPUT (TYP.)	I" EMT INVERTER OUTPUT (TYP.)	Project:
WIRE GUTTER (DC)		ANDOVER, NJ 0782 I
" SCH. 40 PVC FROM CTION BOXES #3 - #8	- WIRE GUTTER (AC)	Project Details: 307.395 kWstc, 230.00 kW AC AHJ: GREEN, TOWNSHIP
		Engineering Approval:
— TRANSF	ORMER	REVISIONS DESCRIPTION DATE REV ORIGINAL G/15/2018 A ELECTRICAL 7/7/2018 B LAYOUT 7/17/2018 C
		Sheet Title: ELECTRICAL ELEVATIONS Sheet Number:
		E1.2 Sheet Size:
		ARCH D - 36" x 24"
		CLARK FLEMING "Do not pray for an easy life, pray for the strength to endure a difficult one." - Bruce Lee
		Reviewed & Approved by:
		RD PV Installation Professional

				C	ONDUCTO	R SPECIFIC	ATIONS		REQUI	RED CONDU	CTOR AMPACI	ГҮ	AMPA	CITY CHECK #1		COI	NDUCTOR	TEMPERATU	RE DERATIN	NG		CONDUIT F	FILL DERATI
TAG	CIRCUIT ORIGIN	CIRCUIT DESTINA	ATION	MATERIA	CONN. L TEMP. RATING	TRADE SIZE	AMPACITY PER 310.15(B)(16) & 310.15(B)(17)	OPTIMIZER OUTPUT X CURRENT	# OF (PARALLEL STRINGS	MAX = CURRENT P 690.8(A)(1	ER x 125% PEF .) 690.8(B)(1	MA = CURREN) 690.8(E	(MAX FPER CURRENT)(1) 690.8(B)(PER < CONDUCTOR AMPACITY 1)	CIRCUIT EN	VIRONMENT A	LOCAL 2% AVG. HIGH TEMP (°C) I	HEIGHT TE ABOVE ROOF (in) 31	EMP. ADDER PER 0.15(B)(3)(c)	OPERATING TEMP (°C)	AMPACITY CORRECTION 10.15(B)(2)(a)	# OF UNGROUNDE CONDUCTOR	AMPA D CORREC S 310.15(B
DC1	PV STRING	JUNCTION BOX #2	2- #6	COPPE	R 90°C	AWG #10	55 Amps	15.0 x	<u>í 1</u>	= 15.0 Am	os x 1.25	= 18.8 /	mps 18.8 Am	nps < 55.0 Amps	FREE AI	R (+15°C)	33	-	N/A	48	0.82	N/A	1.0
DC2	JUNCTION BOX #2 - #6	WIRE GUTTER '	'A'	COPPER	R 75℃	AWG #10	35 Amps	15.0 x	<u>. 1</u>	= 15.0 Am	os x 1.25	= 18.8 /	mps 18.8 Am	nps < 35.0 Amps	UNDERGRO	DUND (+0°C)	33	-	N/A	33	0.96	6	0.8
				CONDUCT	FOR SPECIF	ICATIONS			RE	QUIRED CON	IDUCTOR AMP	ACITY		AMPACITY (CHECK #1	CC	ONDUCTOF	R TEMPERATI	JRE DERATI	NG	CONDUI	T FILL DERATI	NG
TAG	CIRCUIT ORIGIN	CIRCUIT DESTINATION	MATERIAL	TERMINAL TEMP. RATING	TRADE SIZE	NUMBER PARALL CONDUCT	OF AMPACITY EL 310.15(B)(1 ORS 310.15(B)(ER INVER 5) & OUT .7) CURR	≀TER PUT X ≀ENT	# OF INVERTERS	MAX CURREN = PER 690.8(A)(3)	T X 125% PER 690.8(B)(1	= MAX CURREN PER 690.8(B)(T MAX CURRENT PER < 690.8(B)(1)	CONDUCTOR AMPACITY	CIRCUIT ENVI	IRONMENT	LOCAL 2% AVG. HIGH TEMP (°C)	EXPECTED OPERATING TEMP (°C)	AMPACITY CORRECTION 310.15(B)(2)(# (N UNGRO a) CONDU	OF AI UNDED COI CTORS 310.	MPACITY RRECTION 15(B)(3)(a)
AC4	INVERTER #3 - #8	AC COMBINER PANEL 'A'	COPPER	75°C	AWG #6	1	95 Am	s 36.	5 x	1	= 36.5 Amps	x 1.25	= 45.6 Amps	45.6 Amps <	95 Amps	FREE AIR	(+15°C)	33	48	0.82			1.00
AC5	AC COMBINER PANEL 'A'	AC DISCONNECT 'A'	COPPER	75°C	AWG #2/	0 2	350 Am	s 36.	<u>5 x</u>	6	= 219.0 Amps	x 1.25	= 273.8 Amps	273.8 Amps <	350 Amps	FREE AIR	(+15°C)	33	48	0.82	e	i	0.80
AC6	AC DISCONNECT 'A'	AC COMBINER PANEL 'B'	COPPER	75°C	AWG #2/	0 2	350 Am	s 36.	<u>5 x</u>	6	= 219.0 Amps	x 1.25	= 273.8 Amps	273.8 Amps <	350 Amps	UNDERGROU	UND (+0°C)	33	33	0.96	e	i	0.80
AC7	AC COMBINER PANEL 'B'	TRANSFORMER	COPPER	75°C	AWG #2/	0 2	350 Am	s VARI	ES	8	= 279.5 Amps	x 1.25	= 349.4 Amps	349.4 Amps <	350 Amps	UNDERGROU	UND (+0°C)	33	33	0.96	3		1.00
AC8	TRANSFORMER	PV METER	COPPER	75°C	300 kcmi	l 3	855 Am	s SE	E XFMR CA	LCS	= 645.0 Amps	x 1.25	= 806.3 Amps	806.3 Amps <	855 Amps	UNDERGROU	UND (+0°C)	33	33	0.96	3		1.00
AC9	PV METER	AC DISCONNECT 'B'	COPPER	75°C	300 kcmi	3	855 Am	s SE	E XFMR CA	LCS	= 645.0 Amps	x 1.25	= 806.3 Amps	806.3 Amps <	855 Amps	EXT. BLDG. W	/ALL (+15°C)	33	48	0.82	3		1.00
AC10	AC DISCONNECT 'B'	MAIN SERVICE PANEL	COPPER	75°C	300 kcmi	3	855 Am	s SE	EXFMR CA	LCS	= 645.0 Amps	x 1.25	= 806.3 Amps	806.3 Amps <	855 Amps	EXT. BLDG. W	/ALL (+15°C)	33	48	0.82	3		1.00

$) = NE^{1}$	N EQUIP. (E) = EXIS	STING EQUIP.	= LINE (BROWN	J) [2] = LINE 2	(ORANGE)		E 3 (YELLC	W) N	= NEUTR	'AL (WHITE
	PV S	System Maximum \	oltage Calculation pe	er NEC 690.7(A)						
JS	Local Record Low Temp:	-16 °C	Data Source: TETER	RBORO AIRPORT			# OF	PHAS	E CONDUC	TOR
	Voc Temp	Voc	Voc	Max # of	Temperature	TAG	PARALLEL SETS	QTY, Pi	SIZE AND ER CONDUI	TYPE IT
	Coefficient X Record	d + 1 = Correctio	n Correction X Voc	X Modules in =	Corrected Open	DCI	()	2/STRING	AWG #10	PV-WIRE
	LOW TEN		Factor	Series		DC2	()	6	AWG #10	PV-WIRE
	0.29%/°C x 41°C	+ 1 = 1.119	1.119 x 47.5	5 x 2 =	106.2 Volts DC	AC4	()	3	AWG #6	THWN-2
C						AC5	(2)	6	AWG #2/0	THWN-2
0						AC6	(2)	6	AWG #2/0	THWN-2

48	BOV = EQUIP. GROUNDING CO	NDUCTOR = CIRCUIT CONDUC	TOR $-$ = FUSE $-$ = CIRCUIT BREAKER (N)	= NEW EQUIP. (E) = EXISTING EQUIP. $[LI]$ = LINE I (BROWN) $[L2]$ = LINE 2 (ORANG	;E) $\boxed{L3}$ = LINE 3 (YELLOW) \boxed{N} = NEUTRAL (WHITE
20	D8V = EQUIP. GROUNDING CO	NDUCTOR = CIRCUIT CONDUC	TOR $-$ = FUSE $-$ = CIRCUIT BREAKER (N)	= NEW EQUIP. (E) = EXISTING EQUIP. $[LI]$ = LINE I (BLACK) $[L2]$ = LINE 2 (RED)	$\boxed{L3}$ = LINE 3 (BLUE) \boxed{N} = NEUTRAL (WHITE
	Roof-Mounted Array Configuration	Utility-side AC System Summary	PV Module Specifications	PV System Maximum Voltage Calculation per NEC 690.7(A)	Inverter #1 Specifications
	System: 67.62 kWstc, 50 kW AC Total PV Module Qty: 196 Inverter I.D. # Inv #1 Inv #2 Inverter AC Power (kW): 30.00 20.00 PV Power (kWstc): 40.71 26.91 Inverter DC:AC Ratio 1.36 1.35 Module Total Qty: 118 78 String Qty: 1 1 String Length: 39 38 Max Open Circuit Voltage: 980 980 Operating Voltage: 850 850 Max Short Circuit Current: 15.8 15.4 String Length: 39 40 Max Open Circuit Voltage: 980 980 Operating Voltage: 850 850 Max Open Circuit Voltage: 980 980 Operating Current: 15.8 15.4 Max Open Circuit Voltage: 980 980 Operating Voltage: 850 850 Max Open Circuit Voltage: 980 980 Operating Voltage: 850 850	NOMINAL SYSTEM VOLTAGE:208 Volts ACMAX CURRENT PER 690.8(A):640 AmpsMAX CURRENT PER 690.8(B):800 AmpsPV-side AC System SummaryNOMINAL SYSTEM VOLTAGE:480 Volts ACMAX CURRENT PER 690.8(A):277 AmpsMAX CURRENT PER 690.8(B):347 Amps	Model Number:HANWHA Q CELLS Q.PLUS L-G4.2 345Weight (lbs):52.9Dimensions (in):78.5 x 39.4 x 1.4Power @ STC (W):345Voc (VDC):47.5Vmp (VDC):37.9Isc (A):9.64Max Voltage (VDC):1,500Imp (A):9.09Module Quantity:891Power Optimizer SpecificationsModel Number:SolarEdge P730Max Input Power (W):730Max Input Voc (VDC):125Max Input Isc (A):11.0Output Current (A):15Output Voltage (VDC):85Min String Length:26Max String Length:60Modules	Local Record Low Temp: -16 °C Data Source: TETERBORO AIRPORT Voc Temp 25°C - Voc Max # of Temperature Coefficient X Record Low + 1 = Correction Correction X Voc X Modules in = Corrected Open 0.29%/°C x 41°C + 1 = 1.119 1.119 x 47.5 x 2 = 106.2 Volts DC Transformer Calculations PV Voltage: 480 VAC Util. Voltage: 208 VAC PV Current: 280 Amps Util. Current: 645 Amps Minimum Transformer kVA Rating: 300.0 kVA KVA	Model Number:SolarEdge SE30KUSPower Rating (kW AC):30.00Nominal AC Voltage (V):480Max Output Current (A):36.5CEC Weighted Efficiency:98.5%Maximum DC Voltage (V):980Operating DC Voltage (V):850Inverter #2 SpecificationsModel Number:SolarEdge SE20KUSPower Rating (kW AC):20.00Nominal AC Voltage (V):480Max Output Current (A):24.0CEC Weighted Efficiency:98.0%Maximum DC Voltage (V):980Operating DC Voltage (V):980Inverter (A):24.0CEC Weighted Efficiency:98.0%Maximum DC Voltage (V):980Operating DC Voltage (V):850Inv. Quantity:1
"J" T	Operating Current: 15.8 16.2 String Qty: 1 String Length: 40 Max Open Circuit Voltage: 980		Max String Power (W): 12750 Optimizer Quantity: 446		

33

33

33

33

33

FREE AIR (+15°C)

UNDERGROUND (+0°C)

UNDERGROUND (+0°C)

EXT. BLDG. WALL (+15°C)

EXT. BLDG. WALL (+15°C)

48

33

33

48

48

0.82

0.96

0.96

0.82

0.82

0.80

1.00

1.00

1.00

1.00

6

3

3

3

3

Operating Voltage: 850

Max Short Circuit Current: 15.0

				СО	NDUCTO	R SPECIFI	CATIONS				REQU	JIRE		OR AMPACITY	(A	MPAC	ITY CHECK #1	
TAG	CIRCUIT ORIGIN	CIRCUIT DESTINA	TION	MATERIAL	CONN. TEMP. RATING	TRADE SIZE	AMPACITY PER 310.15(B)(16) & 310.15(B)(17)	OF (C	PTIMIZ OUTPU CURREI	ZER JT X NT	# OF PARALLE STRINGS	L =	MAX : CURRENT PER 690.8(A)(1)	X 125% PER 690.8(B)(1)	MAX = CURRENT 690.8(B)	PER CURF (1) 690	MAX ENT PE .8(B)(1)	R < CONDUCTOR AMPACITY	CIRCUIT EN
DC3	PV STRING	JUNCTION BOX #	‡ 1	COPPER	90°C	AWG #10	55 Amps		15.0	х	1	=	15.0 Amps	1.25	= 18.8 Am	ps 18.	3 Amps	< 55.0 Amps	ROOFTO
DC4	JUNCTION BOX #1	WIRE GUTTER 'E	3'	COPPER	75°C	AWG #6	65 Amps		15.0	х	1	=	15.0 Amps	1.25	= 18.8 Am	ps 18.	3 Amps	< 65.0 Amps	EXT. BLDG.
DC5	WIRE GUTTER 'B'	INVERTER #1		COPPER	75°C	AWG #6	65 Amps		15.0	х	1	=	15.0 Amps	1.25	= 18.8 Am	ps 18.	3 Amps	< 65.0 Amps	EXT. BLDG.
DC6	WIRE GUTTER 'B'	INVERTER #2		COPPER	75°C	AWG #6	65 Amps		15.0	х	1	=	15.0 Amps	1.25	= 18.8 Am	ps 18.	3 Amps	< 65.0 Amps	EXT. BLDG.
				CONDUCTO	OR SPECIF	ICATIONS					R	EQL	JIRED CONDU	CTOR AMPAG	CITY			AMPACITY	CHECK #1
TAG	CIRCUIT ORIGIN	CIRCUIT DESTINATION	MATERIAL	TERMINAL TEMP. RATING	TRADE SIZE	NUMBER PARAL	R OF AMPACITY P LEL 310.15(B)(16 TORS 310.15(B)(1	ER) & 7)		INVERTE OUTPU CURREN	ER IT X NT	I	# OF NVERTERS =	MAX CURRENT PER 690.8(A)(3)	x 125% PER 690.8(B)(1)	= MAX CUI PER 690.	RRENT 8(B)(1)	MAX CURRENT PER < 690.8(B)(1)	CONDUCTOR AMPACITY
AC1	INVERTER #1	WIRE GUTTER 'B'	COPPER	75°C	AWG #6	5 1	65 Am	os		34.4	х		1 =	34.4 Amps	x 1.25	= 43.0	Amps	43.0 Amps <	65 Amps
AC2	INVERTER #2	WIRE GUTTER 'B'	COPPER	75°C	AWG #6	5 1	65 Am	os		24.0	х		1 =	24.0 Amps	x 1.25	= 30.0	Amps	30.0 Amps <	65 Amps
AC3	WIRE GUTTER 'B'	AC COMBINER PANEL 'B'	COPPER	75°C	AWG #6	5 1	95 Am	os		VARIE	S		2 =	34.4 Amps	x 1.25	= 43.0	Amps	43.0 Amps <	95 Amps
AC7	AC COMBINER PANEL 'B'	TRANSFORMER	COPPER	75°C	AWG #2,	/0 2	350 Am	ps		VARIE	ES		8 =	279.5 Amps	x 1.25	= 349.4	Amps	349.4 Amps <	350 Amps
AC8	TRANSFORMER	PV METER	COPPER	75°C	300 kcm	il 3	855 Am	ps		SEE	EXFMR	CAL	CS =	645.0 Amps	x 1.25	= 806.3	Amps	806.3 Amps <	855 Amps
AC9	PV METER	AC DISCONNECT 'B'	COPPER	75°C	300 kcm	il 3	855 Am	ps		SEE	EXFMR	CAL	CS =	645.0 Amps	x 1.25	= 806.3	Amps	806.3 Amps <	855 Amps
AC10	AC DISCONNECT 'B'	MAIN SERVICE PANEL	COPPER	75°C	300 kcm	il 3	855 Am	ps		SEE	EXFMR	CAL	CS =	645.0 Amps	x 1.25	= 806.3	Amps	806.3 Amps <	855 Amps

F)	G	= GR			FNI)		= POC	SITIVE (R	PED)		_ = NI	FGATIVE (F				
E)	G	= GR		D (GRE	EN)		= POS	BITIVE (F	(ED)		- = NI	EGATIVE (E	BLACK)			
[、				
NC	TE:	INV	ER ⁻	ter ;	# C	UTI	PUT I	S BE	ING L	IMI ⁻	TED	TO 34	.4A			
PL4	ACE	PLA	CA	RD (DN II	IVE	RTEF	R THA	T STA	ATE.	S Tł	115				
RE	QUII	RED	LIN	MITA	TION											
					ACI-	AC2								Project:		
				С	‡ AC7 - A ONDUIT:	AC I O DETAI	L		AC3 CC	DNDUI	T DETA	NL		ANDOVER,	NJ 07821	
									LI)(L2)	L3			Project Details: 307.395 kWsto	, 230.00 kW	/ AC
					$\binom{(LI)}{(N)}$	(L3) G)/				G						
) (L2)		/		Engineering Appro	val:	
	(3) AWG #	1 2 THHN CU 10 THHN CU G	ND			MIN K	AIC NG: —	TO UTILITY	GRID	UTY GED // C	E					
	TO DEL 2-P BR LOCAT	DICATED 20 A, EAKER ED IN BUILDING	;	(N) AC D	ISCONNECT	(E) BI-DIR (E) BI-DIR (E) UTIL	ECTIONAL ITY METER			08 VAC WY	Ē					
	/ DIST. F	PANEL		EATON DG3 240 VAC, NEMA 3R, I 800 A	328NRK I OOO A, 3-P JL LISTED	#0310 3-PHAS 120/208	E, 4-WIRE		POIN (N) LI PER I	T OF INTE NE SIDE " NEC 240	RCONNECT TAP 21(B)(1) \$	TION 705.12(A)				
<u> </u>								800 4 4 4	LENG SHAL (E) N 800	IH OF TA L NOT EX IAIN SER A, 240	IP CONDUC CEED 10 F VICE DISCC V, 3-P	TORS T DNNECT				
1	e5A	(N) B	AWG #2/0 ONDING JU	MAIN		KAIC			(E) E	BUS BARS	5: 800 A					
		PER	.030 NEC 250.	24(B)	∽RAT 28,	339A			(E) MAII 3-PHAS	N SERVIC	E PANEL E					
							 	<u>کــــــ</u>			ΥE					
					(N) GROUN CONDUCTOR PE	DING ELECTR R NEC 250.2	ODE _/ 4(D) (E) MAIN PER NEC	BONDING JUMPER. 250.8 \$ 250.28								
							F (E) GRO PER	(E) BONDING JUMP ER NEC 250.92(A) JNDING ELECTRODE NEC 250.62, 250.	ER (2) E CONDUCTOR G4, \$ 250.GG							
							(E) GROUNDING ELEC P	ER NEC 250.50					REVIS	BIONS	
														DESCRIPTION ORIGINAL	DATE 6/15/2018	REV A
														LAYOUT	7/7/2018 7/17/2018	B C
				WIRE A		DUIT	SCHFDI	JLE]			
SE CON	IDUCTO	R E	NEUT QTY	RAL CON	DUCTOR	GR	OUND CO	NDUCTOR	PARALL		NDUIT SIZE	CONDUIT TYPE	EST. DIST.			
AWG #	#10 PV #6 PV	-WIRE -WIRE	N/A N/A	N/A	N/A N/A		AWG #1	2 PV-WIR 2 PV-WIR	CONDUI RE (1) RE (1)		N/A - /4"	N/A EMT	5 5			
AWG AWG	#6 PV #6 PV	-WIRE -WIRE	N/A N/A	N/A N/A	N/A N/A		AWG #	2 PV-WIR 2 PV-WIR	RE (1) RE (1)		- /2" - /4"	EMT EMT	50 5			
AWG AWG	#6 TH #6 TH	WN-2 WN-2		AWG #6 AWG #6	THWN-2 THWN-2	2 2 0 '	AWG #	8 THWN- 8 THWN-	2 (1) 2 (1) 2 (1)			EMT EMT	10			
AWG AWG # 300 k	#6 H #2/0 TH .cm: TH	WN-2 WN-2		AWG #6 AWG #2/0 300 kcmi	THWN-2 THWN-2	2 2 2	AWG # AWG # AWG #2	3 THWN- 2/0 THWN-	2 (1) 2 (3) 2 (3)		- 1/4" 2" 3"	LIVII SCH40 PVC SCH40 PVC	20 20	Sheet. Title		
300 k 300 k	cmıl TH cmıl TH	WN-2 WN-2	. .	300 kcmi 300 kcmi	I THWN-2	2 2	AWG #2	2/0 THWN- 2/0 THWN-	2 (3) 2 (3)	2	2-1/2" 2-1/2"	EMT EMT	5 5	ROOF	MOUNT	
NG CITY	C 90	ORREC	TED A		ONDUIT	CULAT DE	TION RATED	AM MA	PACITY CI	HECK	#2	EST.		ELECTRICA	L DIAGRA	٩M
TION (3)(a)	COND AMP	UCTOR ACITY	X DEF	RATE	FILL DERATE	= CON AN	DUCTOR 1PACITY	CURREN 690.8(NT PER < (B)(2)			ONE-WAY DISTANCE	LTAGE DROP	Sheet Number:)	
)	5	5 x 5 x	< 0. < 0.	76 x 82 x	1.00 = 0.50 =	= 41 = 30	.8 Amps .8 Amps	15.0 A	mps < 4: mps < 30	1.8 Ar).8 Ar	nps nps	15 ft 0. 50 ft 0.	.07% .09%	Sheet Size:	-•1	
)	7.	5 x 5 x	< 0.8	82 x 82 x	0.80 =	= 49 = 49	2 Amps 2 Amps	15.0 A	mps < 49 mps < 49).2 Ar).2 Ar	nps nps	50 ft 0.	.09% .01%	ARCH D -	36" x 2	4"
9	CORI 0°C	RECTED		PACITY C	CALCULA	TION DER	ATED		PACITY CH	ECK #	2 ED	VOLTAGE D	ROP	DESIGN & DRAFTING	BY:	
COND AMP	UCTOR ACITY	X DEF	MP RATE	X FI DER	LL = ATE	CORR AMP	ECTED ACITY	PER 690.8	(B)(2) < C			ONE-WAY DISTANCE	OROP	"Do not pray for an the strength to ena	easy life, pray for ure a difficult one.'	"
	75 75	x 0. x 0.	.82 .82	x 1.0 x 1.0	= 00 = 00	61.5 61.5	Amps Amps	34.4 A 24.0 A	Amps < 6 Amps < 6	51.5 51.5	Amps Amps	10 ft 0 10 ft 0	.06% .04%			
1	.05 90	x 0. x 0.	.82 96	x 0.8 x 1.0	80 = 00 =	68.9 374.4	Amps Amps	34.4 A	Amps < 6 Amps < 3	58.9 74.4	Amps Amps	35 ft 0 20 ft 0	.21%	Sep Sep		a r sign
9 9	60 60	x 0. x 0.	96 82	x 1.0 x 1.0	= 00 = 00 =	921.6 787.2	Amps Amps	645.0 A	Amps < 92 Amps < 78	21.6 87.2	Amps Amps	20 ft 0 15 ft 0	.15% .12%	Reviewed & Appro	ved by:	ABCEP
9	60	x 0.	82	x 1.0)0 =	787.2	Amps	645.0 A	Amps < 78	87.2	Amps	15 ft 0	.12%	R		RTIFIED Installation ofessional

ARC FLASH I	HAZARD PPE CATEGORIES	
CATEGORY	REQUIRED PERSONAL PROTECTIVE EQUIPMENT	INCIDENT ENERGY
0	SAFETY GLASSES, LONG-SLEEVE SHIRT AND LONG PANTS MADE OF NON-MELTING, FLAMMABLE MATERIALS (I.E. UNTREATED COTTON, N/A WOOL, RAYON, SILK, OR BLENDS OF THESE MATERIALS)	0-4
	SAFETY GLASSES, HARD HAT, FR SHIRT AND PANTS (OR FR COVERALLS), LEATHER PROTECTIVE GLOVES, AND LEATHER SHOES	4-8
2	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS (OR FR COVERALLS), ARC RATED FACE SHIELD (OR ARC FLASH HOOD), LEATHER GLOVES, AND LEATHER SHOES	8-25
3	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS, FR COVERALLS (IN ADDITION TO FR SHIRT AND PANTS), ARC FLASH HOOD, LEATHER GLOVES, AND LEATHER SHOES	25-40
4	SAFETY GLASSES OR GOGGLES, HEARING PROTECTION, HARD HAT, COTTON UNDERWEAR, FR SHIRT AND PANTS, FR COVERALLS (IN ADDITION TO FR SHIRT AND PANTS), FULL FLASH SUIT WITH HOOD, LEATHER GLOVES, AND LEATHER SHOES	40+
ANY ELECTR MUST BE DI	ICAL EQUIPMENT WITH AN INCIDENT ENERGY OF GREATER THA E-ENERGIZED BEFORE MAINTENANCE IS PERFORMED	N 40 CAL/CM ^ 2
FOR ADDITION	ONAL INFORMATION ON ARC FLASH PPE AND RATING REQUIRE THE STANDARD FOR ELECTRICAL SAFETY IN THE WORKPLACE (MENTS, PLEASE (NFPA 70E)

PHOTOVOLTAIC SYST EQUIPPED WITH RAPID SHUTDOWN	ΓΕΜ N	PHOTOVOLTAIC SYSTEM DISCONNECT AC CURRENT: 219 A VOLTAGE: 480 VAC	PHOTOVOLTAIC SYSTEM DISCONNECT AC CURRENT: 645 A VOLTAGE: 208 VAC	
REQ'D BY: NEC 690.56(C) APPLY TO: PV SYSTEM MAIN AC DISCONNEC	3 CT	REQ'D BY: NEC 690.54 APPLY TO: AC DISCONNECT 'A'	REQ'D BY: NEC 690.54 APPLY TO: AC DISCONNECT 'B'] <u>3</u> A II
INVERTER #	#5	INVERTER #6	INVERTER #7	
3" x " PLACARD QTY: APPLY TO: INVERTER: #5	I O	<u>3" x 1" PLACARD QTY: 1</u> APPLY TO: INVERTER: #G	I <u>3" x 1" PLACARD QTY: 1</u> APPLY TO: INVERTER: #7] <u>3</u> A II
DERATING CURRENT: OPERATING CURRENT: OPERATING VOLTAGE: MAX SYSTEM VOLTAGE: SHORT CIRCUIT CURRENT: STRING WIRING CONFIGURAT STRING 1 - 38 MODULES (19) OF	STEM CT 26.5 A 840 VDC 980 VDC 45 A TION: PTIMIZERS	CAUTION: SOLAR ELECTRIC SYSTEM CONNECTED		
WARNING: ELECTRIC SHOCK HA	ZARD	FOR SERVICE OR INFO, CONTACT: DIRECT ENERGY SOLAR CUSTOMERCARE@DIRECTENERGYSOLAR.CO 888-603-6085	FAULT CURRENT AT THIS LOCATION: 30,306AIC L-L 8/27/2018	

ARC FLASH & SHOCK F APPROPRIATE PP

ARC FLASH HAZARD PR NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY:

208 VDC SHOCK HAZARD WHE SHOCK PROTECTION BOUNDA LIMITED APPROACH BOUNDAR RESTRICTED APPROACH BOUI

PPE REQUIRED CATEGO

REQ'D BY: NFPA 70 E APPLY TO:

MAIN SWITCHGEAR

ARC FLASH & SHOCK H APPROPRIATE PP

ARC FLASH HAZARD PF NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY:

480 VDC SHOCK HAZARD WHEN SHOCK PROTECTION BOUNDAN LIMITED APPROACH BOUNDAR RESTRICTED APPROACH BOUN

PPE REQUIRED CATEGO

REQ'D BY: NFPA 70 E APPLY TO: AC COMBINER PANEL 'B'

K HAZARD PRESENT PPE REQUIRED	ARC FLASH & APPROP
ROTECTION 208 65.99 CAL/CM ² 18 IN. 274.1 IN.	ARC FLASH HA NOMINAL SYSTEM INCIDENT ENERGY AT WORKING DIST ARC FLASH BOUND
HEN COVER IS REMOVED DARIES: ARY: 42 IN. DUNDARY: N/A GORY: 4	208 VDC SHOCK HA SHOCK PROTECTION LIMITED APPROAC RESTRICTED APPR PPE REQUIRED
20	REQ'D BY: NF APPLY TO: AC DISCONNE
RNING	
RNING HAZARD PRESENT PPE REQUIRED	ARC FLASH & APPROP
A HAZARD PRESENT PE REQUIRED ROTECTION : 480 24.63 CAL/CM ² 18 IN. 113.8 IN.	ARC FLASH & APPROP ARC FLASH HA NOMINAL SYSTEM INCIDENT ENERGY AT WORKING DIST ARC FLASH BOUND
A HAZARD PRESENT PE REQUIRED ROTECTION : 480 24.63 CAL/CM ² 18 IN. 113.8 IN. 113.8 IN. HEN COVER IS REMOVED DARIES: ARY: 42 IN. UNDARY: 12 IN.	ARC FLASH & APPROP ARC FLASH HA NOMINAL SYSTEM INCIDENT ENERGY AT WORKING DIST ARC FLASH BOUND 480 VDC SHOCK HA SHOCK PROTECTION LIMITED APPROAC RESTRICTED APPR
A HAZARD PRESENT PE REQUIRED ROTECTION : 480 24.63 CAL/CM ² 18 IN. 113.8 IN. 113.8 IN. HEN COVER IS REMOVED DARIES: ARY: 42 IN. DUNDARY: 12 IN. SORY: 2	ARC FLASH & ARC FLASH & ARC FLASH HA NOMINAL SYSTEM INCIDENT ENERGY AT WORKING DIST ARC FLASH BOUND 480 VDC SHOCK HA SHOCK PROTECTION LIMITED APPROAC RESTRICTED APPR PPE REQUIRED

	G
RC FLASH & SHOCK HAZAR APPROPRIATE PPE REC	D PRESENT QUIRED
C FLASH HAZARD PROTECT MINAL SYSTEM VOLTAGE: CIDENT ENERGY: WORKING DISTANCE OF: C FLASH BOUNDARY:	TON 208 63.22 CAL/CM ² 18 IN. 202.2 IN.
VDC SHOCK HAZARD WHEN COVE OCK PROTECTION BOUNDARIES: IITED APPROACH BOUNDARY: STRICTED APPROACH BOUNDARY:	R IS REMOVED 42 IN. N/A
E REQUIRED CATEGORY: 4	
REQ'D BY: NFPA 70 E APPLY TO: AC DISCONNECT 'B'	21
	G
RC FLASH & SHOCK HAZAR APPROPRIATE PPE REC	G D PRESENT UIRED
C FLASH & SHOCK HAZAR APPROPRIATE PPE REG C FLASH HAZARD PROTECT MINAL SYSTEM VOLTAGE: IDENT ENERGY: WORKING DISTANCE OF: C FLASH BOUNDARY:	G D PRESENT UIRED ION 480 13.41 CAL/CM ² 18 IN. 78.6 IN.
C FLASH & SHOCK HAZAR APPROPRIATE PPE REC C FLASH HAZARD PROTECT MINAL SYSTEM VOLTAGE: DENT ENERGY: WORKING DISTANCE OF: C FLASH BOUNDARY: VDC SHOCK HAZARD WHEN COVE OCK PROTECTION BOUNDARIES: ITED APPROACH BOUNDARY:	G D PRESENT UIRED ION 480 13.41 CAL/CM ² 18 IN. 78.6 IN. R IS REMOVED 42 IN.
C FLASH & SHOCK HAZAR APPROPRIATE PPE REG C FLASH HAZARD PROTECT MINAL SYSTEM VOLTAGE: DENT ENERGY: WORKING DISTANCE OF: C FLASH BOUNDARY: VDC SHOCK HAZARD WHEN COVE OCK PROTECTION BOUNDARIES: ITED APPROACH BOUNDARY: STRICTED APPROACH BOUNDARY: 2 REQUIRED CATEGORY: 2	G D PRESENT UIRED ION 480 13.41 CAL/CM ² 18 IN. 78.6 IN. R IS REMOVED 42 IN. 12 IN.

	NG
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE	RD PRES
ARC FLASH HAZARD PROTEC	TION
NOMINAL SYSTEM VOLTAGE:	480 55 35 C4
AT WORKING DISTANCE OF: ARC FLASH BOUNDARY:	18 IN. 186.4 IN
480 VDC SHOCK HAZARD WHEN COV	ER IS REM
SHOCK PROTECTION BOUNDARIES:	
LIMITED APPROACH BOUNDARY: RESTRICTED APPROACH BOUNDARY	42 IN. 7: 12 IN.
PPE REQUIRED CATEGORY:	4
REQ'D BY: NFPA 70 E	22
APPLY TO:	
	IG
ARC FLASH & SHOCK HAZA	IG RD PRES
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE	IG RD PRES QUIRED
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC	IG RD PRES QUIRED
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE:	RD PRES QUIRED TION 480
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF:	IG RD PRES QUIRED TION 480 13.04 CA 18 IN.
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY:	IG RD PRES QUIRED TION 480 13.04 CA 18 IN. 77.2 IN.
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV	RD PRES QUIRED TION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV SHOCK PROTECTION BOUNDARIES:	RD PRES QUIRED TION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV SHOCK PROTECTION BOUNDARIES: LIMITED APPROACH BOUNDARY: RESTRICTED APPROACH BOUNDARY	IG RD PRES QUIRED 3 TION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO 42 IN. 2 IN. 2 IN.
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV SHOCK PROTECTION BOUNDARIES: LIMITED APPROACH BOUNDARY: RESTRICTED APPROACH BOUNDARY: PPE REQUIRED CATEGORY:	IG RD PRES QUIRED TION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO 42 IN. 2
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV SHOCK PROTECTION BOUNDARIES: LIMITED APPROACH BOUNDARY: RESTRICTED APPROACH BOUNDARY: PPE REQUIRED CATEGORY: T	IG RD PRES QUIRED 3 TION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO 42 IN. 2 2
ARC FLASH & SHOCK HAZA APPROPRIATE PPE RE ARC FLASH HAZARD PROTEC NOMINAL SYSTEM VOLTAGE: INCIDENT ENERGY: AT WORKING DISTANCE OF: ARC FLASH BOUNDARY: 480 VDC SHOCK HAZARD WHEN COV SHOCK PROTECTION BOUNDARIES: LIMITED APPROACH BOUNDARY: RESTRICTED APPROACH BOUNDARY: PPE REQUIRED CATEGORY: T REQ'D BY: NFPA 70 E APPLY TO:	IG RD PRES QUIRED 3 CTION 480 13.04 CA 18 IN. 77.2 IN. ER IS REMO 42 IN. 2 25

SOLARMOUNT Technical Datasheets

SOLARMOUNT Beams

Part No. 310132C, 310132C-B, 310168C, 310168C-B, 310168D 310208C, 310208C-B, 310240C, 310240C-B, 310240D, 410144M, 410168M, 410204M, 410240M

Properties	Units	SOLARMOUNT	SOLARMOUNT HD
Beam Height	in	2.5	3.0
Approximate Weight (per linear ft)	plf	0.811	1.271
Total Cross Sectional Area	in²	0.676	1.059
Section Modulus (X-Axis)	in ³	0.353	0.898
Section Modulus (Y-Axis)	in³	0.113	0.221
Moment of Inertia (X-Axis)	in⁴	0.464	1.450
Moment of Inertia (Y-Axis)	in⁴	0.044	0.267
Radius of Gyration (X-Axis)	in	0.289	1.170
Radius of Gyration (Y-Axis)	in	0.254	0.502
* Rails are extruded using these aluminum alloys:	6005-T5, 6105-T	5, 6061-T6	

Dimensions specified in inches unless noted

 \mathbb{Z}

 $\widetilde{\mathbb{C}}$

NATIONWIDE NETWORK Unirac maintains the largest network of stocking distributors for our racking solutions. Our partners have distinguished their level of customer support, availability, and overall value, thereby providing the highest level of service to

meet your project objectives. Visit Unirac.com for a list of distributors.

AUTOMATED DESIGN TOOL

results and send to a distributor, just click and share.

DESIGN PLATFORM AT YOUR SERVICE Creating a bill of materials is just a few clicks away with U-Builder, a powerful online tool that streamlines the process of designing a code compliant solar mounting system. Save time by creating a user profile, and recall preferences and projects automatically when you log in. You will enjoy the ability to share projects with customers; there's no need to print

SM SOLAR MOUNT

OPTIMIZED COMPONENTS

UNIRAC CUSTOMER SERVICE MEANS THE HIGHEST LEVEL OF PRODUCT SUPPORT

 $\boldsymbol{\times}$

S-5!®

The S-5-H90 and S-5-H90 Mini clamps are each

furnished with the hardware shown to the right. Each

box also includes a bit tip for tightening setscrews

using an electric screw gun. The structural aluminum

attachment clamp is compatible with all common

stainless steel hardware is included. Please visit

www.S-5.com for more information including CAD

metal roofing materials excluding copper. All necessary

details, metallurgical compatibilities, and specifications.

The S-5-H90 clamp has been tested for load-to-failure

results on a variety of horizontal standing seam

roof profiles from leading panel manufacturers. The

independent lab test reports found on our website

at www.S-5.com prove that S-5!* holding strength is

S-5!* Warning! Please use this product responsibly!

Products are protected by multiple U.S. and foreign patents. Visit the website at www.S-5.com for complete information on patents and trademarks. Consult the S 51 website at www.S 5.com for published data regarding installation instructions and holding strength.

Copyright 2015, Metal Roof Innovations, Ltd. S-5I products are patent protected. S-5I aggressively protects its patents, trademarks, and copyrights. Version 052115.

1

unmatched in the industry.

The Right Way!

your permitting and project planning process. and commitment to first class business practices. warranty and a 5-year limited finish warranty PROTECT YOUR REPUTATION WITH QUALITY RACKING SOLUTIONS BACKED BY ENGINEERING EXCELLENCE AND A SUPERIOR SUPPLY CHAIN Grue-infinite

it—leaving roof manufacturers' warranties intact.

 \bigcirc 9

The strength of the S-5-H90 clamp is in its simple design. The patented setscrews will slightly dimple the metal seam material but will not puncture

0.31" (7.87 mm) \

(13.72 mm)

0.31'

0.48" (12.19 mm) (22.86 mm)

(38.10 mm)

S-5-H90

0.50" (12.70 mm)

(38.10 mm)

0.38" (9.65 mm)

0.40" (10.16 mm)

S-5-H90 Mini

0.60" (15.24 mm)

1.50" (38.10 mm)

Distributed by

0.40" (10.16 mm)

 TECHNICAL SUPPORT
 CERTIFIED QUALITY PROVIDER
 BANKABLE WARRANTY

 Unirac's technical support team is dedicated to answering questions & addressing issues in real time. An online library of documents including engineering reports, stamped letters and technical data sheets greatly simplifies
 Unirac is the only PV mounting vendor with ISO certifications for 9001:2008, 14001:2004 and 0HSAS 18001:2007, which means we deliver the highest standards for fit, form, and function, and technical data sheets greatly simplifies
 As a Hitti Group Company, Unirac has the financial strength to back our products and reduce your risk. Have peace of mind knowing you are receiving products of exceptional quality. SOLARMOUNT These certifications buildent products and reduce your difference to the product block to product to great strength to back our product in the product products of exceptional quality. SOLARMOUNT

Two 3/8-24 X 0.80" Round-Point Setscrews

M8-1.25 X 16 mm Hex Flange Bolt

0.75" (2x) M8-1.25 (19.05 mm) Threaded Hole

(2x) 3/8-24 Threaded Hole

Threaded Ho

1.20" (30.48 mm)

(50.80 mm)

One 38:54 X 0.80" Round-Point Setscrew M8-1.25 X 16 mm Hex Flange Bolt

0.76" (19.05 mm)

0.90" (22.86 mm)

(1.50" (38.10 mm)

Ð

UNIRAC

INTEGRATED BONDING MIDCLAMP

5 8888

INTEGRATED BONDING L-FOOT w/ T-BOLT

AB

INTEGRATED BONDING SPLICE BAR

00

INTEGRATED BONDING MICROINVERTER MOUNT w/ WIRE MANAGEMENT

NOR

Turning the clamp 90 degrees so that the bolt hole side is facing up, slip the clamp on the seam and tighten the setscrews. Go to www.S-5.com/tools for information about properly attaching S-5![®] clamps. After the clamp is installed, affix ancillary items using either of the two threaded bolt holes and bolt provided. The S-5-H90 is perfect for use with S-5! ColorGard® and X-Gard™ snow retention systems and other heavy-duty applications. S-5-H90 Mini Clamp

than 0.65".

The S-5-H90 Mini is a bit shorter than the S-5-H90 and has one setscrew and one threaded bolt hole rather than two. The mini is the choice for attaching all kinds of rooftop accessories: signs, walkways, satellite dishes, antennas, rooftop lighting, lightning protection systems, solar arrays, exhaust stack bracing, conduit, condensate lines, mechanical equipment—just about anything!*

The Right Way!

S-5-H90 Clamp

The S-5-H90 is a one-piece clamp

that was developed to securely and

panels with a horizontal seam greater

cost-effectively accommodate metal roof

*S-5! mini clamps are not compatible with, and should not be used with, S-5! SnoRail**/SnoFence** or ColorGard* snow retention systems.

fit standing seam panels with horizontal seams.

Example Profiles 0.65" Top Seam Į ۳

Σ

0

q

S

1

The one-piece S-5-H90 clamp was developed to

	\geq	Optimizer model (typical module compatibility)	P600 (for 2 x 60-cell PV modules)	P700 (for 2 x 72-cell PV modules)	P730 (for 2 x high 72-cell PV me) power (fo odules)	P800p parallel connectio of 2x 96-cell 5" PV modules)	P800s n (for series connectic Zx high power or bi- modules)	n of acial				
		ated Input DC Power ^{EII} bsolute Maximum Input Voltage /oc at lowest temperature) /PPT Operating Range	600 96 12.5 80	700	125 2.5 - 105		83 12.5 - 83	800 120 12.5 - 105	Vdc Vdc				
		Aaximum Short Circuit Current (isc) Aaximum DC Input Current Aaximum Efficiency Veighted Efficiency vervoltage Category	10	65	11 13.75 9 9	99.5 98.6 11	14 17.5	12:5	Adc Adc %				
	0 	Aaximum Output Current Aaximum Output Current Aaximum Output Voltage DUTPUT DURING STANDBY (POWE Afety Output Voltage per Power Optimize	R OPTIMIZER CONN	ECTED TO OPER 15 NECTED FROM SO	DLAREDGE INV	85 /ERTER OR ± 0.1	OLAREDGE INV	18 ERTER OFF)	Adc Vdc				
	Er Sa M Ra	IANDARD COMPLIANCE MC afety faterial oHS		FCC I	Part15 Class B, IEC IEC62109-1 (clas UL-94 (5-VA	C61000-6-2, IE ss II safety), U (), UV Resistan Yes	C61000-6-3 1741 t			Project:			
		NSTALLATION SPECIFICATIONS ompatible SolarEdge Inverters laximum Allowed System Voltage limensions (W x L x H)	128 x 152 x 43 / 5 x 5.97 x 1.69	128 x 152 x	Three pha 1 50 / 5 x 5.97 x 1.9	ase inverters 1000	128 x 158 x 59 / 5 x 6.22 x 2.32	128 x 152 x 59 / 5 x 5.97 x 2.32	Vdc mm ,/in	AN AN	NDOVER,	NJ 07821	
	0 0 0 0 0 0	Veight (including cables) nput Connector hutput Wire Type / Connector hutput Wire Length iperating Temperature Range ^{ra} rotection Rating	994 / 2.2		64 / 2.34 MC4 Co Double Insulated .1 / 6.9 -40 - +85 IP68 /	ompatible d; MC4 Comp / -40 - +185 NEMA6P	1090 / 2.4 tible 1.8 / 5.9	2.1/6.9	gr / lb m / ft °C / °F	Project D)etails: 95 kW/stc	230 00 kW	
	Re ^{III} R	elative: Humidity ated STC pover of the module. Module of up to or ambient temperature above 170°C / 158°F pr V SYSTEM DESIGN USING A SOLA	15% power tolerance allowed. ower de-rating is applied. Refer to REDGE INVERTER ⁽³⁾⁽⁴⁾	o Power Optimizers Tem THREE	0 - perature De-Rating A PHASE 208V	- 100 Application Note	or more details.	PHASE 480V	%	AH.	J: GREEN	i, TOWNSHIP	
	M M M	Ininimum String Length Aaximum String Length Aaximum String Length Aaximum Power per String arallel Stringe A Different Length co Origination	Power Optimizers PV Modules Power Optimizers PV Modules	P600, P700 & P730 6000 ⁽⁶⁾	8 16 30 60 7200	(5))) Vac	12750 ⁽⁷⁾	P800 13 26 30 60 15300		Engineerii	ng Appro	val:	
	P2 (8) p (4) Ir (7) p (7) p (7) p (7) p	arallel Strings of Different Lengths or Orie 600, P700 and P730 can be mixed in one string. In a case of dod number of PV modules in one string nput connectors with the supplied pair of seals. 700/P730/ P800 design with three phase 208V ir for SE14.4KUS\$F63.2KUS: It is allowed to install t trings is up to 1.000W.	t is not allowed to mix P600/P70 ng it is allowed to install one P60 iverters is limited. Use the SolarE ip to 6,500W per string when 3 si to lostall up to 15,000W per stri	0/P730/P800 with P300 0/P700/P730/P800 pow idge Site Designer for ve trings are connected to	P320/P400/P405 in a er optimizer connect ification. he inverter (3 strings	Yes one string. ted to one PV mo s per unit for SE4	dule. When connecting 3.2KUS) and when the r	a single module to the P800p naximum power difference b 00KUS) and when the maxim	i seal the unused				
	d	For 5E33_3KUS/5E66.6KUS/5E100KUS: It is allowed lifference between the strings is up to 2,000W.	to install up to 15,000W per stri	ing when 3 strings are co	nnected to the Inver	ter (3 strings per	unit for SE66.6KUS/SE:	COKUS) and when the maxim	um power				
.us		CE ()	All rights reserved. <u>SOLAREDG</u>	E, the SolarEdge logo.	OPTIMIZED BY SOL	AREDGE							
										-			
											REVIS	BIONS	
										DESCRIPT ORIGINAL	REVIS	DIONS DATE 6/15/2018	REV A
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS FION AL	DATE 6/15/2018 7/17/2018 7/17/2018	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS FION AL	DATE 6/15/2018 7/7/2018 7/17/2018	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS TION AL	DATE 6/15/2018 7/17/2018 7/17/2018	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE 6/15/2018 7/17/2018 7/17/2018	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE 6/15/2018 7/7/2018 7/17/2018	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT		DATE 6/15/2018 7/7/2018 7/17/2018	REV A B C I
										DESCRIPT ORIGINAL ELECTRICA LAYOUT		DATE G/15/2018 7/7/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT		DATE G/15/2018 7/7/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT		DATE G/15/2018 7/7/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
												DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA		DATE 6/15/2018 7/7/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT		DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C Image: Constraint of the second sec
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DIONS DATE G/15/2018 7/17/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	
										DESCRIPT ORIGINAL ELECTRICA LAYOUT Sheet Tit E D, Sheet Nu Sheet Siz ARC	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	
										DESCRIPT ORIGINAL ELECTRICA LAYOUT Sheet Tit E Di Sheet Tit E Di Sheet Nu Sheet Siz ARC DESIGN # CLARK FL	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	
										DESCRIPT ORIGINAL ELECTRICA LAYOUT	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C
										DESCRIPT ORIGINAL ELECTRICA LAYOUT Sheet Tit E Di Sheet Tit E Di Sheet Siz ARC	REVIS	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0	REV A B C 4
										DESCRIPT ORIGINAL ELECTRICA LAYOUT Sheet Tit Sheet Tit ED Sheet Nu Sheet Siz ARC DESIGN # CLARK FL "Do not the stre - Bruce	REVIS TION AL IE: EQUIF ATA S mber: DI RATA S mber: DI Pray for an of a Lee SEC	DATE G/15/2018 7/7/2018 7/17/2018 7/17/2018 7/17/2018 PMENT BHEETS .0 36" x 2 BY: easy life, pray for ure a difficult one.	
										DESCRIPT ORIGINAL ELECTRICA LAYOUT Sheet Tit E DA Sheet Nu Sheet Siz ARC DESIGN # CLARK FL "Do not the stree - Bruce	REVIS TION AL AL Ie: EQUIF ATA S mber: DI RATA S mber: DI Pray for an of a Lee SEC	DIONS DATE G/15/2018 7/17/2018 7/17/2018 7/17/2018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	